



# DURHAM YORK ENERGY CENTRE

COURTICE, ONTARIO

### 2020 Q3 AMBIENT AIR QUALITY MONITORING REPORT RWDI #1803743 November 11, 2020

### SUBMITTED TO:

The Director, Legislative Services-Regional Clerk or Designate,

The Regional Municipality of Durham 605 Rossland Road East, 1st Floor Corporate Services-Legislative Services Division Whitby, ON L1N 6A3

CC:

**Gioseph Anello** Gioseph.Anello@durham.ca

Lyndsay Waller Lyndsay.Waller@durham.ca

Andrew Evans Andrew.Evans@durham.ca

### SUBMITTED BY:

John DeYoe, B.A., d.E.T. Air Quality Specialist – Principal John.DeYoe@rwdi.com

RWDI Consulting Engineers & Scientists 600 Southgate Drive Guelph, ON N1G 4P6 T: 519.823.1311 F: 519.823.1316





## **TABLE OF CONTENTS**

| 1                     | INTRODUCTION1                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------------|
| 1.1                   | Sampling Locations                                                                             |
| 2                     | SAMPLING METHODOLOGY                                                                           |
| 2.1                   | Nitrogen Oxide Analyzers 4                                                                     |
| 2.2                   | Sulphur Dioxide Analyzers                                                                      |
| 2.3                   | SHARP 5030 PM <sub>2.5</sub> Analyzers                                                         |
| 2.4                   | TSP High Volume Air Samplers 6                                                                 |
| 2.5                   | Polyurethane Foam Samplers 6                                                                   |
| 2.6                   | Meteorological Towers                                                                          |
| 3                     | AIR QUALITY CRITERIA AND STANDARDS                                                             |
| 4                     | MECP AUDITS                                                                                    |
| 5                     | SUMMARY OF AMBIENT MEASUREMENTS                                                                |
| 5.1<br>5.1.1<br>5.1.2 | Meteorological Station Results 8   Courtice Station Results 8   Rundle Road Station Results 10 |
| 5.2                   | NO <sub>X</sub> , SO <sub>2</sub> and PM <sub>2.5</sub> Summary Table Results11                |
| 5.3<br>5.3.1          | Oxides of Nitrogen Results                                                                     |
| 5.3.2                 | KUNDIE KOAD STATION KESUITS                                                                    |

| 5.4   | Sulphur Dioxide Results                              | 15 |
|-------|------------------------------------------------------|----|
| 5.4.1 | Courtice Station Results                             |    |
| 5.4.2 | Rundle Road Station Results                          |    |
| 5.5   | Fine Particulate Matter (PM <sub>2.5</sub> ) Results | 19 |
| 5.5.1 | Courtice Station Results                             |    |
| 5.5.2 | Rundle Road Station Results                          |    |
| 5.6   | TSP and Metals Hi-Vol Results                        | 21 |
| 5.6.1 | Courtice Station Results                             |    |
| 5.6.2 | Rundle Road Station Results                          |    |
| 5.7   | PAH Results                                          | 24 |
| 5.7.1 | Courtice Station Results                             |    |
| 5.7.2 | Rundle Road Station Results                          |    |
| 5.8   | Dioxin and Furan Results                             | 26 |
| 5.8.1 | Courtice Station Results                             |    |
| 5.8.2 | Rundle Road Station Results                          |    |
| 6     | DATA REQUESTS                                        | 28 |
| 6.1   | Continuous Monitoring                                |    |
| 6.2   | Discrete Monitoring                                  |    |
| 7     | CONCLUSIONS                                          |    |
|       |                                                      |    |
| 8     | REFERENCES                                           |    |





### LIST OF TABLES

| $PM_{2.5}$ , $SO_2$ and $NO_2$ CAAQS' by Implementation Year     |
|------------------------------------------------------------------|
| Hourly Statistics from the Courtice WPCP Meteorological Station  |
| Hourly Statistics from the Rundle Road Meteorological Station    |
| Summary of Courtice Station Continuous Data Statistics           |
| Summary of Rundle Road Station Continuous Data Statistics        |
| Summary of Exceedance Statistics                                 |
| Summary of TSP Sampler Courtice Station                          |
| Summary of TSP Sampler Rundle Road Station                       |
| Statistics Summary of PAH Results for Courtice Station           |
| Statistics Summary of PAH Results for Rundle Road Station        |
| Courtice Station Q3 Monitoring Results for Dioxins and Furans    |
| Rundle Road Station Q3 Monitoring Results for Dioxins and Furans |
|                                                                  |

## LIST OF FIGURES

- Figure 1: DYEC Site and Ambient Monitoring Station Locations
- Figure 2: Rundle Road Station
- Figure 3: Courtice Station
- Figure 4: Courtice and Rundle Road Wind Roses
- Figure 5: Pollution Roses of Hourly Average NO<sub>2</sub> Concentrations July to September 2020
- Figure 6: Pollution Roses of Hourly Average SO<sub>2</sub> Concentrations July to September 2020
- Figure 7: Pollution Roses of 5-minute Average SO<sub>2</sub> Concentrations >67 ppb July to September 2020
- Figure 8: Pollution Roses of Hourly Average PM<sub>2.5</sub> Concentrations July to September 2020



## LIST OF APPENDICES

| Appendix A1: | 2020 Summary Statistics for Q3                                                                   |
|--------------|--------------------------------------------------------------------------------------------------|
| A2:          | 2020 Q3 Station Courtice Monitoring Results for PM <sub>2.5</sub>                                |
| A3:          | 2020 Q3 Station Rundle Road Monitoring Results for PM <sub>2.5</sub>                             |
| A4:          | 2020 Q3 Station Courtice Monitoring Results for NO <sub>X</sub>                                  |
| A5:          | 2020 Q3 Station Rundle Road Monitoring Results for NO $_X$                                       |
| A6:          | 2020 Q3 Station Courtice Monitoring Results for NO                                               |
| A7:          | 2020 Q3 Station Rundle Road Monitoring Results for NO                                            |
| A8:          | 2020 Q3 Station Courtice Monitoring Results for NO <sub>2</sub>                                  |
| A9:          | 2020 Q3 Station Rundle Road Monitoring Results for NO <sub>2</sub>                               |
| A10:         | 2020 Q3 Station Courtice Monitoring Results for SO <sub>2</sub>                                  |
| A11:         | 2020 Q3 Station Rundle Road Monitoring Results for SO <sub>2</sub>                               |
| A12:         | 2020 Q3 Courtice Meteorological Station Windspeed Data Summary                                   |
| A13:         | 2020 Q3 Rundle Road Meteorological Station Windspeed Data Summary                                |
| A14:         | 2020 Q3 Courtice Meteorological Station Wind Direction Data Summary                              |
| A15:         | 2020 Q3 Rundle Road Meteorological Station Wind Direction Data Summary                           |
| A16:         | 2020 Q3 Courtice Meteorological Station Temperature Data Summary                                 |
| A17:         | 2020 Q3 Rundle Road Meteorological Station Temperature Data Summary                              |
| A18:         | 2020 Q3 Courtice Meteorological Station Relative Humidity Summary                                |
| A19:         | 2020 Q3 Rundle Road Meteorological Station Relative Humidity Summary                             |
| A20:         | 2020 Q3 Courtice Meteorological Station Precipitation Data Summary                               |
| A21:         | 2020 Q3 Rundle Road Meteorological Station Precipitation Data Summary                            |
| A22:         | 2020 Q3 Courtice Meteorological Station Pressure Data Summary                                    |
| Appendix B1: | Summary of Sample Flow Rate and Sample Duration for Dioxins & Furans                             |
| B2:          | 2020 Courtice Station Q3 Monitoring Results for Dioxins & Furans                                 |
| B3:          | 2020 Rundle Road Station Q3 Monitoring Results for Dioxins & Furans                              |
| B4:          | Summary of Sample Flow Rate and Sample Duration for Polycyclic Aromatic Hydrocarbons (PAH)       |
| B5:          | Courtice Station Q3 Monitoring Results for PAH's                                                 |
| B6:          | Rundle Road Station Q3 Monitoring Results for PAH's                                              |
| B7:          | Summary of Sample Flow Rate and Sample Duration for Total Suspended Particulate (TSP) and Metals |
| B8:          | 2020 Courtice Station Q3 Monitoring Results for TSP and Metals                                   |
| B9:          | 2020 Rundle Road Station Q3 Monitoring Results for TSP and Metals                                |
| Appendix C:  | 2020 Q3 Courtice and Rundle Road Station Zero Graphs                                             |

| Appendix D1: | 3rd Quarter Edit Log for PM <sub>2.5</sub> at Courtice Station                                                  |
|--------------|-----------------------------------------------------------------------------------------------------------------|
| D2:          | 3rd Quarter Edit Log for PM <sub>2.5</sub> at Rundle Road Station                                               |
| D3:          | 3rd Quarter Edit Log for NO <sub>x</sub> at Courtice Station                                                    |
| D4:          | 3rd Quarter Edit Log for NO <sub>X</sub> at Rundle Road Station                                                 |
| D5:          | 3rd Quarter Edit Log for SO <sub>2</sub> at Courtice Station                                                    |
| D6:          | 3rd Quarter Edit Log for SO <sub>2</sub> at Rundle Road Station                                                 |
| D7:          | 3rd Quarter Edit Log for Meteorological Parameters at Courtice Station                                          |
| D8:          | 3rd Quarter Edit Log for Meteorological Parameters at Rundle Road Station                                       |
| D9:          | 3rd Quarter Edit Log for Discrete Sampling at Courtice Station                                                  |
| D10:         | 3rd Quarter Edit Log for Discrete Sampling at Rundle Road Station                                               |
| Appendix E1: | Table E1-E3: 10-min SO <sub>2</sub> Running Average Exceedances at Courtice and Rundle Road Monitoring Stations |
| E2:          | Table E4-E6: 1-hour SO <sub>2</sub> Running Average Exceedances at Courtice and Rundle Road Monitoring Stations |
| E3:          | September 24th BaP Exceedance Documentation for Courtice and Rundle Road Stations                               |
| Appendix F:  | Durham York Energy Centre (DYEC) Ambient Air Q3 Sulphur Dioxide Emissions Technical Memorandum                  |

RWDI#1803743 November 11, 2020

# 1 INTRODUCTION

RWDI AIR Inc. (RWDI) was retained by Durham Region and York Region (the Regions) to conduct discrete and continuous air quality ambient monitoring at the Durham York Energy Centre (DYEC) monitoring stations. The facility address is 1835 Energy Drive, Clarington, Ontario. The DYEC is a facility that manages post diversion municipal solid waste from Durham Region and York Region to create energy from waste combustion. Commercial operation of the DYEC commenced on February 1, 2016. The site location is shown below in Figure 1.

Condition 11 of the Environmental Assessment Notice of Approval and Condition 7(4) of the Environmental Compliance Approval (ECA) requires ambient air monitoring to be undertaken by the DYEC. An Ambient Air Monitoring and Reporting Plan was prepared and approved by the Ministry of Environment, Conservation and Parks (MECP) to satisfy these conditions. Two (2) monitoring stations were established to monitor ambient air quality around the DYEC and quantify the background ambient air quality levels and DYEC contributed emissions to ambient air quality levels.

This monitoring plan was developed based on the Regional Council mandate to provide ambient monitoring in the area of the DYEC. The purposes of the ambient monitoring program are to:

- Quantify any measurable ground level concentrations resulting from emissions from the DYEC cumulative to local air quality, including validating the predicted concentrations from the dispersion modelling conducted in the Environmental Assessment (2009a);
- Monitor concentration levels of EFW-related air contaminants in nearby residential areas; and,
- Quantify background ambient levels of air contaminants in the area.

The facility has two (2) monitoring stations which collect continuous and discrete ambient measurements, known as the Courtice Station and Rundle Road Station. The station locations are shown in Figure 1. The Courtice and Rundle Road Stations were operational in May of 2013 and have been operated on behalf of the Region of Durham by Stantec Consulting Ltd. since that time up until July 31, 2018. RWDI has overseen the operation of the stations on behalf of the Region of Durham since August 1, 2018.

The Courtice and Rundle Road Stations continuously monitor the following air quality parameters: Particulate Matter less than 2.5 microns (PM2.5), Nitrogen Oxides (NO<sub>X</sub>) and Sulfur Dioxide (SO<sub>2</sub>). In addition, both discretely monitor the following air quality parameters: Total Suspended Particulate (TSP), Metals, Dioxins and Furans (D&F) and Polycyclic Aromatic Hydrocarbons (PAHs).

Continuous meteorological data is collected at the Courtice and Rundle Road Stations. The Rundle Road Station collects the following meteorological parameters: wind speed, wind direction, ambient temperature, precipitation and relative humidity. The meteorological tower there, is approximately 10 meters tall. The Courtice Station collects the following meteorological parameters: ambient temperature, ambient pressure, precipitation and relative humidity. For purposes of this report, wind speed and wind direction data for the Courtice Station have been obtained from the adjacent Courtice Water Pollution Control Plant (WPCP) meteorological tower, which is approximately 20 meters tall.

Throughout this monitoring period there were two (2) exceedances of the AAQC for Benzo(a) Pyrene which occurred on September 24<sup>th</sup> at the Courtice and Rundle Road Stations, there were two (2) exceedance events of the rolling 10-minute SO<sub>2</sub> AAQC and two (2) exceedance events of the rolling 1-hour SO<sub>2</sub> AAQC at the Courtice Station, and there was one (1) exceedance event of the rolling SO<sub>2</sub> 10-minute AAQC and one (1) exceedance event of the rolling 1-hour SO<sub>2</sub> AAQC at the Rundle Road Station. Data recovery rates were acceptable and valid for all measured Q3 parameters.

#### Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM

RWDI#1803743 November 11, 2020





#### Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM

RWDI#1803743 November 11, 2020



### 1.1 Sampling Locations

The Station sites were selected in consultation with a working group that included representatives from the MECP, the Region of Durham, York Region, and the Energy from Waste Advisory Committee (EFWAC), as required by Condition 11.3 of the Environmental Assessment Notice of Approval. The Courtice Station is predominantly upwind of the DYEC and is located on the Courtice WPCP property just southwest of the DYEC. The Rundle Road Station is predominantly downwind of the DYEC and is located just southeast of the intersection of Baseline Road and Rundle Road just northeast of the DYEC. Pictures of the two (2) Stations are presented as Figure 2 and 3.

#### Figure 2. Rundle Road Station



#### Figure 3. Courtice Station



RWDI#1803743 November 11, 2020



## 2 SAMPLING METHODOLOGY

The Rundle Road and Courtice Stations are both equipped with the following continuous monitors: Thermo Scientific Model 5030 SHARP (Synchronized Hybrid Ambient Real-time Particulate) monitor (PM<sub>2.5</sub> analyzer), Teledyne Nitrogen Oxides Analyzer Model T200 (NO<sub>X</sub> analyzer), and a Teledyne Sulfur Dioxide Analyzer Model T100 (SO<sub>2</sub> analyzer). Both Stations also have the following periodic monitors: High Volume (Hi-Vol) Air Sampler outfitted with a TSP inlet head as approved by the United States Environmental Protection Agency (U.S. EPA), and a Hi-Vol Air Sampler outfitted with a polyurethane foam plug and circular quartz filter for measuring PAH's and D&F's as approved by U.S. EPA.

### 2.1 Nitrogen Oxide Analyzers

The Teledyne T200 Nitrogen Oxide (NO<sub>X</sub>) analyzers use chemiluminescence detection, coupled with microprocessor technology to provide sensitivity and stability for ambient air quality applications. The instrument determines real-time concentration of nitric oxide (NO), total nitrogen oxides (NO<sub>X</sub>) (the sum of NO and NO<sub>2</sub>), and nitrogen dioxide (NO<sub>2</sub>). The amount of NO is measured by detecting the chemiluminescence reaction that occurs in the reaction cell when NO molecules are exposed to ozone (O<sub>3</sub>). The NO and O<sub>3</sub> molecules collide in the reaction cell and enter a higher energy state. When these excited molecules return to a stable energy state, they emit a photon of light which is proportional to the amount of NO in the sample stream of gas entering the analyzer. To determine the total NO<sub>X</sub> (NO+NO<sub>2</sub>) measurement, sample gas is periodically bypassed through a heated molybdenum converter cartridge that converts any NO<sub>2</sub> molecules in the sample stream into NO (any existing NO molecules in the stream remain as is). The instrument will switch the sample stream through the converter periodically and then through the reaction cell where the same chemiluminescence reaction occurs with ozone. The resultant response produced is now the sum of NO and converted NO<sub>2</sub> producing a NO<sub>X</sub> measurement. The resultant NO<sub>2</sub> determination is the NO<sub>X</sub> measurement subtracted from the NO measurement.

The NO<sub>x</sub> analyzers were zero and span checked daily using the internal zero and span (IZS) system and calibrated once a month using either EPA protocol span gases and a dilution system or an ESA permeation tube calibrator. Automatic IZS checks were performed on a daily basis commencing at approximately 1:45 and ending at 02:15. The checks consisted of a 10-minute zero check, a 10-minute span check and a 10-minute purge. These checks provide a way to monitor daily performance of the analyzer using an external charcoal and purafil zeroing cartridge for the zero, and an internal permeation oven with a permeation tube for the span. These IZS checks are not for calibration purposes but are merely a diagnostic tool to identify instrument drift.

The instrument collects data using its own data acquisition system (DAS) on a 5-minute interval. Data is collected from the instrument directly to an EnviDAS logger at 1-min, 5-min and 60-min intervals. The logger can be accessed remotely, and all instrument parameters can be examined as well as the measurement data. This allows the tracking of instrument performance. Data was also collected at 1-minute intervals by an external datalogger using analog output connections as a back-up. The measurement data was averaged using Envista processing software over a 1-hour and 24-hour period to compare to the applicable ambient air quality criteria.

#### Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM

RWDI#1803743 November 11, 2020

### 2.2 Sulphur Dioxide Analyzers

The Teledyne T100 Sulphur Dioxide (SO<sub>2</sub>) Analyzer is a microprocessor-controlled analyzer that determines the concentration of SO<sub>2</sub> in a sample gas drawn through the instrument. In the sample chamber, sample gas is excited by ultraviolet light causing the SO<sub>2</sub> to absorb energy from the light and move to an active state (SO<sub>2</sub>\*). These active SO<sub>2</sub>\* molecules must decay into a stable state back to SO<sub>2</sub>, and when this happens a photon of light is released which is recognized by the instrument as fluorescence. The instrument measures the amount of florescence to determine the amount of SO<sub>2</sub> present in the sample gas.

The SO<sub>2</sub> analyzers were zero and span checked daily using the IZS system and calibrated once a month using either EPA protocol span gases and a dilution system or an ESA permeation tube calibrator. Automatic IZS checks were performed on a daily basis commencing at approximately 1:45 and ending at 02:15. The checks consisted of a 10-minute zero check, a 10-minute span check and a 10-minute purge. These checks provide a way to monitor daily performance of the analyzer using an external charcoal and purafil zeroing cartridge for the zero, and an internal permeation oven with a permeation tube for the span. These IZS checks are not for calibration purposes but are merely a diagnostic tool to identify instrument drift.

The instrument collects data using its own data acquisition system (DAS) on a 5-minute interval. Data is collected from the instrument directly to an EnviDAS logger at 1-min, 5-min and 60-min intervals. The logger can be accessed remotely, and all instrument parameters can be examined as well as the measurement data. This allows the tracking of instrument performance. Data was also collected at 1-minute intervals by an external datalogger using analog output connections as a back-up. The measurement data was averaged using Envista processing software over a 1-hour and 24-hour period to compare to the applicable ambient air quality criteria.

### 2.3 SHARP 5030 PM<sub>2.5</sub> Analyzers

The SHARP 5030 is a hybrid nephelometric/radiometric particulate mass monitor capable of providing precise, real-time measurements with a superior detection limit. The SHARP incorporates a high sensitivity light scattering photometer whose output signal is continuously referenced to the time-averaged measurement of an integral beta attenuating mass sensor. The SHARP also incorporates a dynamic inlet heating system designed to maintain the relative humidity of the air passing through the filter tape constant.

The SHARP is calibrated once a month to ensure accuracy and validity of its data. The PM<sub>2.5</sub> inlet head and sharp cut cyclone is cleaned monthly as well to ensure proper performance. The monthly calibration process consists of the following: zeroing the nephelometer if necessary, calibration of ambient temperature, calibration of barometric pressure, and calibration of the flow.

The instrument collects data using its own data acquisition system (DAS) on a 5-minute interval. Data is collected from the instrument directly to an EnviDAS logger at 1-min, 5-min and 60-min intervals. The logger can be accessed remotely, and all instrument parameters can be examined as well as the measurement data. This allows the tracking of instrument performance. Data was also collected at 1-minute intervals by an external datalogger using analog output connections as a back-up. The measurement data was averaged using Envista processing software over a 1-hour and 24-hour period to compare to the applicable ambient air quality criteria.

#### Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM

RWDI#1803743 November 11, 2020

### 2.4 TSP High Volume Air Samplers

The Tisch TE-5170 Total Suspended Particulate (TSP) high volume (Hi-Vol) air samplers were outfitted with a TSP gabled inlet capable of collecting particulate of all aerodynamic diameters. Each Hi-Vol is equipped with a mass flow controller, which ensures a flow rate of 40 cubic feet per minute (CFM), a chart recorder for measuring cfm flow throughout the run time, an elapsed timer and a wheel timer for starting and stopping each sample. In the latter part of 2019, the pin-based wheel timer was modified with an automated relay system controlled by a data logger to toggle the sampler on and off, and the chart recorder system was replaced by a digital pressure transducer to record the blower output pressure. Teflon coated glass fibre filters are outfitted at the top of the hi-vol samplers where air is drawn through the filter, thereby collecting TSP. Each Hi-Vol is calibrated quarterly (every three months) to ensure accuracy and validity of the volume of air drawn through the sampler.

The Teflon coated glass fibre filter media was pre and post weighed by ALS Laboratories in Burlington, Ontario. The filters are then analyzed for total particulate weight, metals analysis and mercury.

### 2.5 Polyurethane Foam Samplers

The D&F, and PAH samples were collected using Tisch TE-1000 samplers, which are listed as reference devices for U.S. EPA Methods TO-9 and TO-13. The samplers use a collection filter that is 'backed-up' by a polyurethane foam (PUF) plug. The airborne compounds present in the particulate phase are collected on the Teflon coated glass fibre filter and any compounds present in the vapour phase are absorbed in the PUF plug. Each PUF sampler is equipped with a mass flow controller, which can sustain 8 CFM of flow over the sampling period, an elapsed timer and a wheel timer for starting and stopping each sample. In the latter part of 2019, the pin-based wheel timer was modified with an automated relay system controlled by a data logger to toggle the sampler on and off, and the chart recorder system was replaced by a digital pressure transducer to record the blower output pressure. Each PUF sampler is calibrated quarterly (every three months) to ensure accuracy and validity of the volume of air drawn through the sampler.

The filter and PUF media/glassware is proofed and analyzed by ALS Laboratories in Burlington, Ontario. The filters and PUF/XAD plugs are then analyzed for PAH's and D&F's.

### 2.6 Meteorological Towers

Meteorological data was collected from the Rundle Road and Courtice Stations. This is done so that a vector could be associated with the applicable contaminant concentrations. The Rundle Road and Courtice Stations are outfitted with a Campbell Scientific HMP60 Temperature / Relative Humidity probe, and a Texas Instruments TE525M rain gauge. Meteorological data was collected at 1-minute intervals and was averaged using Envista processing software over a 1-hour period.

RWDI#1803743 November 11, 2020



## 3 AIR QUALITY CRITERIA AND STANDARDS

The monitored contaminant concentrations were compared to air quality criteria and standards set by the MECP and by Environment Canada. The MECP developed Ambient Air Quality Criteria (AAQCs) which are the maximum desirable concentrations in the outdoor air, based on effects to the environment and health (MECP, 2012). Not all contaminants have an applicable regulatory limit; therefore, other criteria were used for comparison. These included human health risk assessment (HHRA) criteria. New AAQC's for SO<sub>2</sub> were implemented in 2020, including a 10-minute rolling average AAQC of 67 ppb, a 1-hour rolling average AAQC of 40ppb and an annual AAQC of 4 ppb. There is no longer a 24-hour rolling average AAQC for SO<sub>2</sub>.

Environment Canada has established a Canadian Ambient Air Quality Standard (CAAQS) which are health-based air quality objectives for the outdoor air (Environment Canada, 2013). The current CAAQS' for PM<sub>2.5</sub> are 27 µg/m<sup>3</sup> for the 3-year average of annual 98<sup>th</sup> percentile 24-hour concentration, and 8.8 µg/m<sup>3</sup> for the 3-year average of annual average concentrations (in effect as of 2020). The CAAQS' are listed in **Table 1**. No direct comparison to the 2020 CAAQS' is appropriate for this report, as the standards are only applicable to 3-year averaged data which is provided in the annual reports.

| Devementer                       | Averaging | Year A | pplied | Statistical Form                                                  |
|----------------------------------|-----------|--------|--------|-------------------------------------------------------------------|
| Falalleter                       | Time      | 2020   | 2025   |                                                                   |
|                                  | 04 hour   | 27     |        | The 3-year average of the annual 98th percentile of the daily 24- |
| Fine Particulate Matter (PM)     | 24-110u1  | µg/m³  |        | hour average concentrations                                       |
| Fille Falliculate Matter (FM2.5) | Annual    | 8.8    |        | The 3-year average of the annual average of all 1-hour            |
|                                  | Annuai    | µg/m³  |        | concentrations                                                    |
|                                  | 1 hour    | 70     | 65     | The 3-year average of the annual 99th percentile of the SO2 daily |
| Sulphur Diavida (SO.)            | I-noui    | ppb    | ppb    | maximum 1-hour average concentrations                             |
|                                  | Annual    | 5      | 4      | The average over a single calendar year of all 1-hour average     |
|                                  | Annual    | ppb    | ppb    | SO <sub>2</sub> concentrations                                    |
|                                  | 1 hour    | 60     | 42     | The 3-year average of the annual 98th percentile of the daily     |
| Nitrogon Diovido (NO.)           | I-noui    | ppb    | ppb    | maximum 1-hour average concentrations                             |
| Nitrogen Dioxide (NO2)           | Annual    | 17     | 12     | The average over a single calendar year of all 1-hour average     |
|                                  | Annual    | ppb    | ppb    | concentrations                                                    |

#### Table 1. PM<sub>2.5</sub>, SO<sub>2</sub> and NO<sub>2</sub> CAAQS' by Implementation Year

(CCME,2019)

All applicable criteria and standards are shown in the 'Summary of Ambient Measurements' section of this report.

RWDI#1803743 November 11, 2020



## 4 MECP AUDITS

There was no MECP audit during Q3.

## **5 SUMMARY OF AMBIENT MEASUREMENTS**

Ambient air quality monitoring results for all contaminants sampled at the Courtice and Rundle Road Stations are discussed herein. Summary statistics from July to September 2020 are presented in a summary format below and in a more detailed matrix format in **Appendix A** for continuous measurements and **Appendix B** for discrete measurements.

### 5.1 Meteorological Station Results

### 5.1.1 Courtice Station Results

The Courtice Station collected the following meteorological parameters: relative humidity, ambient temperature, ambient pressure and precipitation. For purposes of this report, wind speed and wind direction data for the Courtice Station have been obtained from the adjacent Courtice Water Pollution Control Plant (WPCP) meteorological tower, which is approximately 20 meters tall. The Courtice Station maintained a minimum 99.9% of data collection for all of the parameters measured during Q3. Calibrations were performed on the meteorological instrumentation at the Courtice Station, as well as the Courtice WWTP wind head on August 20<sup>th</sup>, 2020. Hourly statistics from the meteorological station are presented in **Table 2**. A wind rose showing trends in wind speed and wind direction during Q3 is provided in **Figure 4**.

#### Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM

RWDI#1803743 November 11, 2020



#### Figure 4. Wind Roses of Hourly Wind Speed and Wind Direction – July to September 2020



Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM RWDI #1803743 November 11, 2020

| Courtice Station MET<br>Statistics |         | Maximu | um 1 hr N | <i>l</i> lean |      |         | Minimur | n 1 hr Me | an   |      |         | Monthly Mean Total |     |      |      |       |       | % valid hours |       |       |       |       |  |  |  |
|------------------------------------|---------|--------|-----------|---------------|------|---------|---------|-----------|------|------|---------|--------------------|-----|------|------|-------|-------|---------------|-------|-------|-------|-------|--|--|--|
| Parameter                          | WS      | Temp   | RH        | Pres          | Rain | WS      | Temp    | RH        | Pres | Rain | WS      | Temp               | RH  | Pres | Rain | Rain  | WS    | WD            | Temp  | RH    | Pres  | Rain  |  |  |  |
| Units                              | (km/hr) | (°C)   | (%)       | "Hg           | mm   | (km/hr) | (°C)    | (%)       | "Hg  | mm   | (km/hr) | (°C)               | (%) | "Hg  | mm   | mm    |       |               | (%    | %)    |       |       |  |  |  |
| July                               | 24      | 33     | 98        | 29.9          | 5.9  | 0       | 16      | 34        | 29.3 | 0.0  | 9       | 23                 | 74  | 29.6 | 0.0  | 33.9  | 100.0 | 100.0         | 99.7  | 99.7  | 99.7  | 99.7  |  |  |  |
| August                             | 38      | 29     | 98        | 29.9          | 16.1 | 0       | 11      | 36        | 29.1 | 0.0  | 10      | 21                 | 73  | 29.6 | 0.1  | 98.7  | 99.6  | 99.6          | 100.0 | 100.0 | 100.0 | 100.0 |  |  |  |
| September                          | 38      | 25     | 97        | 30.3          | 6.1  | 1       | 3       | 32        | 29.2 | 0.0  | 11      | 16                 | 72  | 29.8 | 0.1  | 39.3  | 100.0 | 100.0         | 100.0 | 100.0 | 100.0 | 100.0 |  |  |  |
| Q3 Arithmetic Mean                 |         |        |           |               |      |         |         |           |      |      | 10      | 20                 | 73  | 29.7 | 0.1  | 171.9 | 99.9  | 99.9          | 99.9  | 99.9  | 99.9  | 99.9  |  |  |  |

#### Table 2: Hourly Statistics from the Courtice Station and WPCP (WS and WD) Meteorological Station

### 5.1.2 Rundle Road Station Results

The Rundle Road Station collected the following meteorological parameters: wind speed, wind direction, relative humidity, ambient temperature and precipitation. The meteorological tower at the station is at a height of approximately 10 meters tall. The Rundle Road Station maintained a minimum 92.2% data collection for all of the meteorological parameters measured during Q3. Calibrations were performed on the meteorological instrumentation at the Rundle Station on August 20<sup>th</sup>, 2020. Hourly statistics from the meteorological station is presented in **Table 3**. A wind rose showing trends in wind speed and wind direction during Q3 is provided in **Figure 4**.

| Table 3: Hourly Statistics | from the Rundle Road | d Meteorological Station |
|----------------------------|----------------------|--------------------------|
|----------------------------|----------------------|--------------------------|

| Rundle Road Station<br>MET Statistics |         | Maximu | m 1 hr Mean |      |         | Minimum | 1 hr Mean |      |         | Montl | hly Mean |      | Total | % Valid Hours |      |       |       |       |
|---------------------------------------|---------|--------|-------------|------|---------|---------|-----------|------|---------|-------|----------|------|-------|---------------|------|-------|-------|-------|
| Parameter                             | WS      | Temp   | RH          | Rain | WS      | Temp    | RH        | Rain | WS      | Temp  | RH       | Rain | Rain  | WS            | WD   | Temp  | RH    | Rain  |
| Units                                 | (km/hr) | (°C)   | (%)         | mm   | (km/hr) | (°C)    | (%)       | mm   | (km/hr) | (°C)  | (%)      | mm   | mm    |               |      | (%)   |       |       |
| July                                  | 27      | 34     | 96          | 5.7  | 0       | 15      | 33        | 0.0  | 8       | 23    | 71       | 0.0  | 31.9  | 100.0         | 91.8 | 100.0 | 100.0 | 100.0 |
| August                                | 26      | 29     | 99          | 9.4  | 0       | 9       | 35        | 0.0  | 8       | 21    | 73       | 0.1  | 83.8  | 99.6          | 88.6 | 99.6  | 99.6  | 99.7  |
| September                             | 32      | 26     | 100         | 6.1  | 0       | 1       | 33        | 0.0  | 8       | 16    | 73       | 0.1  | 45.9  | 100.0         | 96.4 | 100.0 | 100.0 | 100.0 |
| Q3 Arithmetic Mean                    |         |        |             |      |         |         | ·         |      | 8       | 20    | 72       | 0.1  | 161.6 | 99.9          | 92.2 | 99.9  | 99.9  | 99.9  |



### 5.2 NO<sub>X</sub>, SO<sub>2</sub> and PM<sub>2.5</sub> Summary Table Results

**Table 4** provides a summary of Maximum 1-hour Rolling Means, Maximum 24-hour Rolling Means, Monthly Means, Quarterly Means and Percent valid data for the Courtice Station. **Table 5** provides a summary of Maximum 1-hour Means, Maximum 24-hour Means, Monthly Means, Monthly Means, Quarterly Means and Percent valid data for the Courtice Station. **Table 6** provides a summary of exceedance statistics for both Courtice and Rundle Road Stations. There were two (2) exceedance events of the rolling 10-minute SO<sub>2</sub> AAQC and two (2) exceedance events of the rolling 1-hour SO<sub>2</sub> AAQC at the Courtice Station, and there was one (1) exceedance event of the rolling SO<sub>2</sub> 10-minute AAQC and one (1) exceedance event of the rolling 1-hour SO<sub>2</sub> AAQC at the Rundle Road Station in Q3.

#### Table 4: Summary of Courtice Station Continuous Data Statistics

| Courtice Monitoring Station Data<br>Statistics | Maximum Rolling 10 min<br>Mean |                   | Maximun | n Rolling | 1 hr Mean       |                 |                 | Maximum     | 24 hr Roll | ing Mean        |                 | Mor               | thly Me         | ean | % Valid Hours   |                 |                     |      |      |                 |                 |  |  |
|------------------------------------------------|--------------------------------|-------------------|---------|-----------|-----------------|-----------------|-----------------|-------------|------------|-----------------|-----------------|-------------------|-----------------|-----|-----------------|-----------------|---------------------|------|------|-----------------|-----------------|--|--|
| Compound                                       | SO <sub>2</sub>                | PM <sub>2.5</sub> | NOx     | NO        | NO <sub>2</sub> | SO <sub>2</sub> | PM2.5           | NOx         | NO         | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | NOx             | NO  | NO <sub>2</sub> | SO <sub>2</sub> | PM2.5               | NOx  | NO   | NO <sub>2</sub> | SO <sub>2</sub> |  |  |
| Units                                          | ppb                            | (µg/m³)           |         | р         | pb              |                 | (µg/m³)         | (µg/m³) ppb |            |                 |                 |                   | (µg/m³) ppb     |     |                 |                 |                     | (%)  |      |                 |                 |  |  |
| AAQC/CAAQS                                     | 67                             |                   |         |           | 200             | 40              | 27 <sup>A</sup> |             |            | 100             |                 |                   |                 |     |                 |                 |                     |      |      |                 |                 |  |  |
| July                                           | 20.1                           | 42.7              | 34.9    | 14.9      | 28.3            | 13.9            | 14.6            | 9.4         | 2.8        | 7.7             | 1.8             | 6.2               | 3.7             | 0.6 | 3.2             | 0.3             | 99.6                | 99.7 | 99.7 | 99.7            | 99.5            |  |  |
| August                                         | 109.7                          | 22.5              | 39.9    | 29.2      | 26.1            | 54.2            | 14.0            | 15.3        | 7.1        | 9.5             | 5.0             | 5.4               | 4.7             | 1.0 | 3.7             | 1.5             | 99.6                | 98.3 | 98.3 | 98.3            | 99.6            |  |  |
| September                                      | 55.0                           | 39.5              | 62.8    | 37.5      | 38.6            | 39.6            | 16.9            | 16.2        | 3.9        | 14.7            | 8.3             | 5.0               | 4.7             | 1.0 | 3.7             | 2.1             | 99.7                | 99.7 | 99.7 | 99.7            | 99.6            |  |  |
| Q3 Arithmetic Mean                             |                                |                   |         | ·         | <u>.</u>        |                 |                 |             |            |                 |                 |                   | 5.5 4.4 0.9 3.5 |     |                 | 1.3             | 99.6 99.2 99.2 99.2 |      |      | 99.5            |                 |  |  |

<sup>A</sup> The 24-hour PM<sub>2.5</sub> CAAQS applies to the 98<sup>th</sup> percentile over 3 consecutive years.

#### Table 5: Summary of Rundle Road Station Continuous Data Statistics

| Rundle Road Monitoring Station<br>Data Statistics | Maximum Rolling 10 min<br>Mean |         | Maximun | n Rolling | 1 hr Mean       |                 | Maximum 24 hr Rolling Mean |                |     |                 |                 |             | Mor | thly Me | an              | % Valid Hours   |        |      |      |                 |                 |  |
|---------------------------------------------------|--------------------------------|---------|---------|-----------|-----------------|-----------------|----------------------------|----------------|-----|-----------------|-----------------|-------------|-----|---------|-----------------|-----------------|--------|------|------|-----------------|-----------------|--|
| Compound                                          | SO <sub>2</sub>                | PM2.5   | NOx     | NO        | NO <sub>2</sub> | SO <sub>2</sub> | PM2.5                      | NOx            | NO  | NO <sub>2</sub> | SO <sub>2</sub> | PM 2.5      | NOx | NO      | NO <sub>2</sub> | SO <sub>2</sub> | PM 2.5 | NOx  | NO   | NO <sub>2</sub> | SO <sub>2</sub> |  |
| Units                                             | ppb                            | (µg/m³) |         | p         | pb              |                 | (µg/m³)                    | (µg/m³) ppb (µ |     |                 |                 | (µg/m³) ppb |     |         |                 |                 | (%)    |      |      |                 |                 |  |
| AAQC/CAAQS                                        | 67                             |         |         |           | 200             | 40              | 27 <sup>A</sup>            |                |     | 100             |                 |             |     |         |                 |                 |        |      |      |                 |                 |  |
| July                                              | 4.6                            | 28.3    | 21.3    | 11.0      | 13.9            | 3.6             | 11.8                       | 6.6            | 1.5 | 5.4             | 1.2             | 5.1         | 3.0 | 0.6     | 2.6             | 0.3             | 99.7   | 99.7 | 99.7 | 99.7            | 99.7            |  |
| August                                            | 34.3                           | 23.1    | 30.5    | 16.8      | 17.7            | 22.8            | 13.2                       | 9.2            | 2.1 | 7.6             | 1.7             | 4.4         | 3.2 | 0.8     | 2.5             | 0.4             | 99.9   | 99.5 | 99.5 | 99.5            | 99.9            |  |
| September                                         | 67.8                           | 30.6    | 34.9    | 19.9      | 20.7            | 41.5            | 13.6                       | 9.0            | 2.5 | 6.8             | 4.6             | 4.0         | 3.0 | 0.7     | 2.6             | 0.3             | 99.7   | 99.6 | 99.6 | 99.6            | 99.0            |  |
| Q3 Arithmetic Mean                                |                                |         |         |           |                 |                 |                            |                |     |                 |                 | 4.5         | 3.1 | 0.7     | 2.6             | 0.3             | 99.8   | 99.6 | 99.6 | 99.6            | 99.5            |  |

<sup>A</sup> The 24-hour PM<sub>2.5</sub> CAAQS applies to the 98<sup>th</sup> percentile over 3 consecutive years.





#### **Table 6: Summary of Exceedance Statistics**

| Event Statistics | Rolling<br>Mean > 10<br>min AAQC<br>for<br>Courtice | Rolling<br>Mean ><br>10 min<br>AAQC for<br>Rundle<br>Road | Mear<br>Cour | n > 1 hr AA<br>rtice Moni<br>Station | QC for<br>toring | Mean<br>Ri<br>Moni | > 1 hr AA<br>undle Ro<br>itoring Si | AQC for<br>ad<br>tation | Rollin<br>AAQ<br>Moni | g Mean ><br>C for Cou<br>toring St | · 24 hr<br>rtice<br>ation | Rolling Mean > 24 hr<br>AAQC for Rundle Road<br>Monitoring Station |                 |                 |  |  |
|------------------|-----------------------------------------------------|-----------------------------------------------------------|--------------|--------------------------------------|------------------|--------------------|-------------------------------------|-------------------------|-----------------------|------------------------------------|---------------------------|--------------------------------------------------------------------|-----------------|-----------------|--|--|
| Compound         | SO <sub>2</sub>                                     | SO <sub>2</sub>                                           | PM 2.5       | NO <sub>2</sub>                      | SO <sub>2</sub>  | PM 2.5             | NO2                                 | SO <sub>2</sub>         | PM 2.5                | NO <sub>2</sub>                    | SO <sub>2</sub>           | PM2.5                                                              | NO <sub>2</sub> | SO <sub>2</sub> |  |  |
| Units            | No.                                                 | No.                                                       |              | No.                                  |                  |                    | No.                                 |                         |                       | No.                                |                           | No.                                                                |                 |                 |  |  |
| July             | 0                                                   | 0                                                         |              | 0                                    | 0                |                    | 0                                   | 0                       | N/A                   | 0                                  |                           | N/A                                                                | 0               |                 |  |  |
| August           | 2                                                   | 0                                                         |              | 0                                    | 2                |                    | 0                                   | 0                       | N/A                   | 0                                  |                           | N/A                                                                | 0               |                 |  |  |
| September        | 0                                                   | 1                                                         |              | 0                                    | 0                |                    | 0                                   | 1                       | N/A                   | 0                                  | ]                         | N/A                                                                | 0               |                 |  |  |
| Q3 Total         | 2                                                   | 1                                                         |              | 0                                    | 2                |                    | 0                                   | 1                       | N/A                   | 0                                  |                           | N/A                                                                | 0               |                 |  |  |

### 5.3 Oxides of Nitrogen Results

### 5.3.1 Courtice Station Results

Data recovery levels were high for oxides of nitrogen (99.2% valid data). Monitoring results were compared to the AAQC for NO<sub>2</sub> only, as it is the only parameter that has AAQC values for 1-hour and 24-hour averaging periods (there are no AAQC's for NO or NO<sub>x</sub>). There were no exceedances above the AAQC values for the entirety of the sampling period for rolling 1-hour and 24-hour averaged data. The highest NO<sub>2</sub> value seen among the 1-hour rolling averages was 38.6 ppb, which is 19.3% of the AAQC. The highest NO<sub>2</sub> value seen among the rolling 24-hour averages was 14.7 ppb, which is 14.7% of the AAQC. The measurements are summarized in **Table 4** above. A pollution rose is presented in **Figure 5** for the Courtice Station during Q3 composed of hourly average NO<sub>2</sub> concentrations. A pollution rose indicates the percentage of time that the wind originates from a given direction coupled with the pollutant measurement for that time in either ppb or micrograms per meter cubed. In order to show where possible major sources of pollutants are coming from, levels below 5 ppb were omitted from the graphic wind rose representation.

The Courtice Station pollution rose in **Figure 5** shows the majority of the NO<sub>2</sub> impacts were largely between the ESE and W directions. The Station would be downwind of the DYEC if winds were from the northeast and east-northeast components, which happened to be very minimal, therefore it is unlikely that any significant impact came from the DYEC. There are larger impacts from the ESE which indicates likely impacts from the surrounding industry along the lakeshore, and from the SE-SW which is likely from long range transport across the lake.



### 5.3.2 Rundle Road Station Results

Data recovery levels were high for oxides of nitrogen (99.6% valid data). There were no exceedances above the AAQC values for the entirety of the sampling period for rolling 1-hour and 24-hour averaged data. The highest NO<sub>2</sub> value seen among the 1-hour rolling averages was 20.7 ppb, which is 10.4% of the AAQC. The highest NO<sub>2</sub> value seen among the rolling 24-hour averages was 7.6 ppb, which is 7.6% of the AAQC. The measurements are summarized in **Table 5** above. A pollution rose is presented in **Figure 5** for the Rundle Road Station during Q3 composed of hourly average NO<sub>2</sub> concentrations. In order to show where possible major sources of pollutants are coming from, levels below 5 ppb were omitted from the graphic wind rose representation.

The Rundle Road Station pollution rose in **Figure 5** shows that the majority of elevated NO<sub>2</sub> events at the Rundle Road Station occurred when winds were from the west and west-southwest which is in line with high traffic areas and urban background, with a possible contribution from DYEC in the WSW quadrant. It is unlikely that the DYEC was a major contributor to NO<sub>2</sub> levels at the station.

Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM RWDI #1803743 November 11, 2020



Figure 5. Pollution Roses of Hourly Average NO<sub>2</sub> Concentrations – July to September 2020



### 5.4 Sulphur Dioxide Results

### 5.4.1 Courtice Station Results

Data recovery levels were high for sulphur dioxide (99.5% valid data). Monitoring results were compared to the AAQC for 10-minute and 1-hour rolling average periods. In 2020, there have been more frequent SO<sub>2</sub> concentrations elevated above the AAQC's than in previous years due to the new limits imposed at the start of 2020. The highest SO<sub>2</sub> value seen among the 10-min rolling averages was 109.7 ppb, which is 163.7% of the AAQC. The highest SO<sub>2</sub> value seen among the 1-hour rolling averages was 54.2 ppb, which is 135.5% of the AAQC. There were two (2) exceedance events of the rolling 10-minute AAQC and two (2) exceedance events of the rolling 1-hour AAQC. Tables outlining the interpretation of each exceedance period can be found in **Appendix E.** 

The SO<sub>2</sub> statistical results are summarized in **Table 4** above. A pollution rose is presented in **Figure 6** for the Courtice Station during Q3 composed of hourly average SO<sub>2</sub> concentrations. In order to show where possible major sources of pollutants are coming from, levels below 5 ppb were omitted from the graphic wind rose representation. A pollution rose is presented in **Figure 7** for the Courtice Station during Q3 composed of 5-minute average SO<sub>2</sub> concentrations with levels below 67 ppb omitted to illustrate directionality of exceedance concentrations.

The Courtice Station pollution rose in **Figure 6** shows that the majority of elevated SO<sub>2</sub> events at Courtice occurred from the SSE to S directions. The events were possibly a result of emissions from long range transport across the lake and a small contribution from the ESE direction which would possibly originate from industrial sources along the lakeshore. It is unlikely that any significant contribution of measured SO<sub>2</sub> came from the DYEC. The Courtice Station pollution rose in **Figure 7** shows that 0.03% of the 5-min SO<sub>2</sub> events which are elevated >67 ppb occurred from the WSW S, SSE, ESE and E directions. The conclusion about the sources is the same as **Figure 6** and it is unlikely that any significant contribution of measured SO<sub>2</sub> came from the DYEC.

Durham Region staff have provided a Technical Memorandum summarizing the DYEC SO<sub>2</sub> continuous emissions monitoring system (CEMS) data during the exceedance events recorded at the Courtice and Rundle Road Ambient Monitoring Stations for Q3, which is included in **Appendix F**. The Memorandum indicates that based on the in-stack concentration levels measured by the CEMS, that there were no unusual levels in SO<sub>2</sub> emissions during the ambient Station exceedance events and that the facility's contribution to ambient air quality would be expected to be quite low.

### 5.4.2 Rundle Road Station Results

Data recovery levels were high for sulphur dioxide (99.5% valid data). Monitoring results were compared to the AAQC for 10-minute and 1-hour rolling average periods. The highest SO<sub>2</sub> value seen among the 10-min rolling averages was 67.8 ppb, which is 101.2% of the AAQC. The highest SO<sub>2</sub> value seen among the 1-hour rolling averages was 41.5 ppb, which is 103.8% of the AAQC. There was one (1) exceedance event of the rolling 10-minute AAQC and one (1) exceedance event of the rolling 1-hour AAQC. Tables outlining the interpretation of each exceedance period can be found in **Appendix E.** Other meteorological and exceedance analysis can be provided upon request but is outside the scope of the current program.



The SO<sub>2</sub> statistical results are summarized in **Table 5** above. A pollution rose is presented in **Figure 6** for the Rundle Road Station during Q3 composed of hourly average SO<sub>2</sub> concentrations. In order to show where possible major sources of pollutants are coming from, levels below 5 ppb were omitted from the graphic wind rose representation. A pollution rose is presented in **Figure 7** for the Rundle Road Station during Q3 composed of 5-minute average SO<sub>2</sub> concentrations with levels below 67 ppb omitted to illustrate directionality of exceedance concentrations.

The Rundle Road Station pollution rose in **Figure 6** shows that the majority of elevated  $SO_2$  events at the Rundle Road Station occurred when winds were from the ESE to SSE. The pollution rose indicates that the DYEC was a not major contributor to  $SO_2$  levels at the station and that the levels may be related to other industrial activity. The Rundle Road Station pollution rose in **Figure 7** shows that <0.01% of the 5-min  $SO_2$  events which are elevated >67 ppb occurred from the ESE direction. The conclusion about the sources is the same as **Figure 6** and it is unlikely that any significant contribution of measured  $SO_2$  came from the DYEC. Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM RWDI #1803743 November 11, 2020



#### Figure 6. Pollution Roses of Hourly Average SO<sub>2</sub> Concentrations – July to September 2020



Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM RWDI #1803743 November 11, 2020



Figure 7. Pollution Roses of 5-minute Average SO<sub>2</sub> Concentrations >67 ppb – July to September 2020





### 5.5 Fine Particulate Matter (PM<sub>2.5</sub>) Results

### 5.5.1 Courtice Station Results

Data recovery levels were high for particulate matter less than 2.5 microns (99.6% valid data). There is no 1-hour AAQC or standard for PM<sub>2.5</sub>, but there is a 24-hour CAAQS of 27  $\mu$ g/m<sup>3</sup> for the 3-year average of the annual 98<sup>th</sup> percentile 24-hour concentrations, and 8.8  $\mu$ g/m<sup>3</sup> for the 3-year average of the annual average concentrations (in effect as of 2020). Note that since the reported data is only quarterly and the CAAQS is applicable to the 3-year average, the CAAQS' for PM<sub>2.5</sub> was not applicable to the data. The highest PM<sub>2.5</sub> value seen among the 1-hour rolling averages was 42.7  $\mu$ g/m<sup>3</sup> and the highest value seen among the 24-hour rolling averages was 16.9  $\mu$ g/m<sup>3</sup>. The results are summarized in **Table 4** above. A pollution rose is presented in **Figure 8** for the Courtice Station during Q3 composed of hourly average PM<sub>2.5</sub> concentrations. In order to show where possible major sources of pollutants are coming from, levels below 5  $\mu$ g/m<sup>3</sup> were omitted from the graphic wind rose representation.

The Courtice Station pollution rose in **Figure 8** shows that the majority of elevated PM<sub>2.5</sub> events at Courtice were largely from the WNW-NW. Elevated PM<sub>2.5</sub> measurements were likely related to urban background, roadway emissions and other nearby industrial sources.

### 5.5.2 Rundle Road Station Results

Data recovery levels were high for particulate matter less than 2.5 microns (99.8% valid data). The highest PM<sub>2.5</sub> value seen among the 1-hour rolling averages was  $30.6 \ \mu g/m^3$  and the highest value seen among the 24-hour rolling averages was  $13.6 \ \mu g/m^3$ . The results are summarized in **Table 5** above. A pollution rose is presented in **Figure 8** for the Rundle Road Station during Q3 composed of hourly average PM<sub>2.5</sub> concentrations. In order to show where possible major sources of pollutants are coming from, levels below  $5 \ \mu g/m^3$  were omitted from the graphic wind rose representation.

The Rundle Road pollution rose in **Figure 8** shows that the majority of elevated PM<sub>2.5</sub> events at the Rundle Road Station occurred when winds were from WSW, which is in line with high traffic areas and urban background, with a possible contribution from DYEC in the WSW quadrant.

Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM RWDI #1803743 November 11, 2020



#### Figure 8. Pollution Roses of Hourly Average PM<sub>2.5</sub> Concentrations – July to September 2020





### 5.6 TSP and Metals Hi-Vol Results

All of the TSP Hi-Vols operated on a discrete schedule every 6 days according to the NAPS schedule during Q3 with the sample days being: July 2, 8, 14, 20, 26, August 1, 7, 13, 19, 25, 31 and September 6, 12, 18, 24, 30.

### 5.6.1 Courtice Station Results

Data recovery levels were high for the TSP sampler at the Courtice Station (100% valid data). There were no exceedances of any of the AAQC's or HHRA Criteria for TSP, mercury or metals during Q3. **Table 7** is a summary of the statistics for this station.

Q3 AMBIENT AIR QUALITY MONITORING REPORT THE REGIONAL MUNICIPALITY OF DURHAM RWDI #1803743 November 11, 2020

#### Table 7: Summary of TSP Sampler Courtice Station

| Contaminant        | Units | MECP<br>Criteria | HHRA<br>Health<br>Based<br>Criteria | No. ><br>Criteria | Geometric Mean | Arithmetic Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number of Valid<br>Samples | % Valid<br>data |
|--------------------|-------|------------------|-------------------------------------|-------------------|----------------|-----------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|----------------------------|-----------------|
| Particulate (TSP)  | µg/m³ | 120              | 120                                 | 0                 | 26.07          | 29.55           | 11.59                       | 69.66                       | 69.66                         | 36.85                              | 52.51                                 | 16                         | 100             |
| Total Mercury (Hg) | µg/m³ | 2                | 2                                   | 0                 | 9.58E-06       | 1.17E-05        | 2.94E-06                    | 4.00E-05                    | 1.34E-05                      | 4.00E-05                           | 1.31E-05                              | 16                         | 100             |
| Aluminum (Al)      | µg/m³ | 4.8              | -                                   | 0                 | 1.62E-01       | 1.93E-01        | 7.16E-02                    | 5.00E-01                    | 3.55E-01                      | 3.62E-01                           | 5.00E-01                              | 16                         | 100             |
| Antimony (Sb)      | µg/m³ | 25               | 25                                  | 0                 | 7.38E-04       | 7.79E-04        | 4.78E-04                    | 1.44E-03                    | 1.35E-03                      | 9.29E-04                           | 1.44E-03                              | 16                         | 100             |
| Arsenic (As)       | µg/m³ | 0.3              | 0.3                                 | 0                 | 9.53E-04       | 9.89E-04        | 8.59E-04                    | 2.36E-03                    | 9.77E-04                      | 8.93E-04                           | 2.36E-03                              | 16                         | 100             |
| Barium (Ba)        | µg/m³ | 10               | 10                                  | 0                 | 7.36E-03       | 8.15E-03        | 3.47E-03                    | 1.55E-02                    | 1.55E-02                      | 1.29E-02                           | 1.15E-02                              | 16                         | 100             |
| Beryllium (Be)     | µg/m³ | 0.01             | 0.01                                | 0                 | 2.99E-05       | 2.99E-05        | 2.86E-05                    | 3.26E-05                    | 3.26E-05                      | 2.98E-05                           | 2.98E-05                              | 16                         | 100             |
| Bismuth (Bi)       | µg/m³ | -                | -                                   | -                 | 5.38E-04       | 5.38E-04        | 5.15E-04                    | 5.86E-04                    | 5.86E-04                      | 5.36E-04                           | 5.37E-04                              | 16                         | 100             |
| Boron (B)          | µg/m³ | 120              | -                                   | 0                 | 1.19E-02       | 1.20E-02        | 1.15E-02                    | 1.30E-02                    | 1.30E-02                      | 1.19E-02                           | 1.19E-02                              | 16                         | 100             |
| Cadmium (Cd)       | µg/m³ | 0.025            | 0.025                               | 0                 | 5.97E-04       | 5.98E-04        | 5.73E-04                    | 6.51E-04                    | 6.51E-04                      | 5.96E-04                           | 5.97E-04                              | 16                         | 100             |
| Chromium (Cr)      | µg/m³ | 0.5              | -                                   | 0                 | 1.59E-03       | 1.67E-03        | 1.43E-03                    | 4.43E-03                    | 4.43E-03                      | 1.49E-03                           | 1.49E-03                              | 16                         | 100             |
| Cobalt (Co)        | µg/m³ | 0.1              | 0.1                                 | 0                 | 5.97E-04       | 5.98E-04        | 5.73E-04                    | 6.51E-04                    | 6.51E-04                      | 5.96E-04                           | 5.97E-04                              | 16                         | 100             |
| Copper (Cu)        | µg/m³ | 50               | -                                   | 0                 | 1.26E-02       | 1.42E-02        | 6.79E-03                    | 3.37E-02                    | 3.37E-02                      | 2.27E-02                           | 3.06E-02                              | 16                         | 100             |
| Iron (Fe)          | µg/m³ | 4                | -                                   | 0                 | 4.41E-01       | 4.88E-01        | 2.54E-01                    | 1.26E+00                    | 1.26E+00                      | 7.63E-01                           | 6.84E-01                              | 16                         | 100             |
| Lead (Pb)          | µg/m³ | 0.5              | 0.5                                 | 0                 | 1.95E-03       | 2.34E-03        | 8.63E-04                    | 7.81E-03                    | 7.81E-03                      | 2.17E-03                           | 4.25E-03                              | 16                         | 100             |
| Magnesium (Mg)     | µg/m³ | -                | -                                   | -                 | 2.33E-01       | 2.74E-01        | 1.41E-01                    | 8.98E-01                    | 8.98E-01                      | 3.93E-01                           | 3.83E-01                              | 16                         | 100             |
| Manganese (Mn)     | µg/m³ | 0.4              | -                                   | 0                 | 1.19E-02       | 1.36E-02        | 6.13E-03                    | 3.69E-02                    | 3.69E-02                      | 2.34E-02                           | 2.07E-02                              | 16                         | 100             |
| Molybdenum (Mo)    | µg/m³ | 120              | -                                   | 0                 | 4.06E-04       | 4.64E-04        | 2.86E-04                    | 1.24E-03                    | 1.24E-03                      | 7.10E-04                           | 8.26E-04                              | 16                         | 100             |
| Nickel (Ni)        | µg/m³ | 0.2              | -                                   | 0                 | 9.38E-04       | 9.62E-04        | 8.59E-04                    | 2.02E-03                    | 2.02E-03                      | 8.93E-04                           | 8.95E-04                              | 16                         | 100             |
| Phosphorus (P)     | µg/m³ | -                | -                                   | -                 | 2.24E-01       | 2.24E-01        | 2.15E-01                    | 2.44E-01                    | 2.44E-01                      | 2.23E-01                           | 2.24E-01                              | 16                         | 100             |
| Selenium (Se)      | µg/m³ | 10               | 10                                  | 0                 | 2.99E-03       | 2.99E-03        | 2.86E-03                    | 3.26E-03                    | 3.26E-03                      | 2.98E-03                           | 2.98E-03                              | 16                         | 100             |
| Silver (Ag)        | µg/m³ | 1                | 1                                   | 0                 | 2.99E-04       | 2.99E-04        | 2.86E-04                    | 3.26E-04                    | 3.26E-04                      | 2.98E-04                           | 2.98E-04                              | 16                         | 100             |
| Strontium (Sr)     | µg/m³ | 120              | -                                   | 0                 | 6.40E-03       | 7.52E-03        | 2.51E-03                    | 2.08E-02                    | 2.08E-02                      | 9.80E-03                           | 1.23E-02                              | 16                         | 100             |
| Thallium (TI)      | µg/m³ | -                | -                                   | -                 | 2.69E-05       | 2.69E-05        | 2.58E-05                    | 2.93E-05                    | 2.93E-05                      | 2.68E-05                           | 2.68E-05                              | 16                         | 100             |
| Tin (Sn)           | µg/m³ | 10               | 10                                  | 0                 | 7.41E-04       | 8.51E-04        | 2.88E-04                    | 1.89E-03                    | 1.43E-03                      | 1.89E-03                           | 1.59E-03                              | 16                         | 100             |
| Titanium (Ti)      | µg/m³ | 120              | -                                   | 0                 | 7.67E-03       | 9.34E-03        | 3.23E-03                    | 2.07E-02                    | 1.95E-02                      | 1.82E-02                           | 2.07E-02                              | 16                         | 100             |
| Uranium (Ur)       | µg/m³ | 1.5              | -                                   | 0                 | 2.99E-05       | 2.99E-05        | 2.86E-05                    | 3.26E-05                    | 3.26E-05                      | 2.98E-05                           | 2.98E-05                              | 16                         | 100             |
| Vanadium (V)       | µg/m³ | 2                | 1                                   | 0                 | 1.49E-03       | 1.49E-03        | 1.43E-03                    | 1.63E-03                    | 1.63E-03                      | 1.49E-03                           | 1.49E-03                              | 16                         | 100             |
| Zinc (Zn)          | µg/m³ | 120              | -                                   | 0                 | 3.14E-02       | 3.35E-02        | 1.44E-02                    | 6.36E-02                    | 6.36E-02                      | 5.87E-02                           | 3.60E-02                              | 16                         | 100             |
| Zirconium (Zr)     | µg/m³ | 20               | -                                   | 0                 | 5.97E-04       | 5.98E-04        | 5.73E-04                    | 6.51E-04                    | 6.51E-04                      | 5.96E-04                           | 5.97E-04                              | 16                         | 100             |



### 5.6.2 Rundle Road Station Results

Data recovery levels were high for the TSP sampler at the Rundle Road Station (81% valid data). There were no exceedances of any of the AAQC's or HHRA Criteria for TSP, mercury or metals during Q3

| Contaminant        | Units             | MECP<br>Criteria | HHRA<br>Health<br>Based<br>Criteria | No. ><br>Criteria | Geometric Mean | Arithmetic Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number of<br>Valid<br>Samples | % Valid<br>data |
|--------------------|-------------------|------------------|-------------------------------------|-------------------|----------------|-----------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|-----------------|
| Particulate (TSP)  | µg/m³             | 120              | 120                                 | 0                 | 24.1           | 26.1            | 13.7                        | 43.9                        | 41.7                          | 33.9                               | 43.9                                  | 13                            | 81              |
| Total Mercury (Hg) | µg/m³             | 2                | 2                                   | 0                 | 6.96E-06       | 9.53E-06        | 2.85E-06                    | 3.13E-05                    | 1.96E-05                      | 3.13E-05                           | 7.68E-06                              | 13                            | 81              |
| Aluminum (Al)      | µg/m³             | 4.8              | -                                   | 0                 | 1.59E-01       | 1.76E-01        | 8.17E-02                    | 3.01E-01                    | 2.85E-01                      | 2.67E-01                           | 3.01E-01                              | 13                            | 81              |
| Antimony (Sb)      | µg/m³             | 25               | 25                                  | 0                 | 5.48E-04       | 6.11E-04        | 2.45E-04                    | 1.33E-03                    | 1.33E-03                      | 6.05E-04                           | 1.03E-03                              | 13                            | 81              |
| Arsenic (As)       | µg/m³             | 0.3              | 0.3                                 | 0                 | 9.97E-04       | 1.06E-03        | 8.71E-04                    | 2.79E-03                    | 1.01E-03                      | 9.29E-04                           | 2.79E-03                              | 13                            | 81              |
| Barium (Ba)        | µg/m³             | 10               | 10                                  | 0                 | 6.84E-03       | 7.80E-03        | 3.25E-03                    | 1.97E-02                    | 1.97E-02                      | 1.00E-02                           | 9.51E-03                              | 13                            | 81              |
| Beryllium (Be)     | µg/m³             | 0.01             | 0.01                                | 0                 | 3.03E-05       | 3.04E-05        | 2.85E-05                    | 3.37E-05                    | 3.37E-05                      | 3.10E-05                           | 3.01E-05                              | 13                            | 81              |
| Bismuth (Bi)       | µg/m³             | -                | -                                   | -                 | 5.46E-04       | 5.47E-04        | 5.13E-04                    | 6.07E-04                    | 6.07E-04                      | 5.57E-04                           | 5.42E-04                              | 13                            | 81              |
| Boron (B)          | µg/m³             | 120              | -                                   | 0                 | 1.21E-02       | 1.21E-02        | 1.14E-02                    | 1.35E-02                    | 1.35E-02                      | 1.24E-02                           | 1.20E-02                              | 13                            | 81              |
| Cadmium (Cd)       | µg/m³             | 0.025            | 0.025                               | 0                 | 6.07E-04       | 6.07E-04        | 5.69E-04                    | 6.74E-04                    | 6.74E-04                      | 6.19E-04                           | 6.02E-04                              | 13                            | 81              |
| Chromium (Cr)      | µg/m³             | 0.5              | -                                   | 0                 | 1.62E-03       | 1.69E-03        | 1.42E-03                    | 3.98E-03                    | 3.98E-03                      | 1.55E-03                           | 1.50E-03                              | 13                            | 81              |
| Cobalt (Co)        | µg/m³             | 0.1              | 0.1                                 | 0                 | 6.07E-04       | 6.07E-04        | 5.69E-04                    | 6.74E-04                    | 6.74E-04                      | 6.19E-04                           | 6.02E-04                              | 13                            | 81              |
| Copper (Cu)        | µg/m³             | 50               | -                                   | 0                 | 3.36E-02       | 3.64E-02        | 1.48E-02                    | 5.74E-02                    | 5.74E-02                      | 5.72E-02                           | 4.04E-02                              | 13                            | 81              |
| Iron (Fe)          | µg/m³             | 4                | -                                   | 0                 | 3.78E-01       | 4.16E-01        | 1.66E-01                    | 8.83E-01                    | 8.83E-01                      | 7.06E-01                           | 4.96E-01                              | 13                            | 81              |
| Lead (Pb)          | µg/m³             | 0.5              | 0.5                                 | 0                 | 1.84E-03       | 2.22E-03        | 8.71E-04                    | 5.93E-03                    | 5.93E-03                      | 3.03E-03                           | 3.13E-03                              | 13                            | 81              |
| Magnesium (Mg)     | µg/m³             | -                | -                                   | -                 | 1.99E-01       | 2.22E-01        | 9.87E-02                    | 4.72E-01                    | 4.72E-01                      | 3.10E-01                           | 3.07E-01                              | 13                            | 81              |
| Manganese (Mn)     | µg/m³             | 0.4              | -                                   | 0                 | 1.07E-02       | 1.21E-02        | 5.46E-03                    | 2.62E-02                    | 2.62E-02                      | 1.95E-02                           | 1.87E-02                              | 13                            | 81              |
| Molybdenum (Mo)    | µg/m³             | 120              | -                                   | 0                 | 1.21E-03       | 1.38E-03        | 2.90E-04                    | 2.90E-03                    | 2.90E-03                      | 1.93E-03                           | 1.44E-03                              | 13                            | 81              |
| Nickel (Ni)        | µg/m³             | 0.2              | -                                   | 0                 | 9.10E-04       | 9.11E-04        | 8.54E-04                    | 1.01E-03                    | 1.01E-03                      | 9.29E-04                           | 9.03E-04                              | 13                            | 81              |
| Phosphorus (P)     | µg/m³             | -                | -                                   | -                 | 2.28E-01       | 2.28E-01        | 2.14E-01                    | 2.53E-01                    | 2.53E-01                      | 2.32E-01                           | 2.26E-01                              | 13                            | 81              |
| Selenium (Se)      | µg/m³             | 10               | 10                                  | 0                 | 3.03E-03       | 3.04E-03        | 2.85E-03                    | 3.37E-03                    | 3.37E-03                      | 3.10E-03                           | 3.01E-03                              | 13                            | 81              |
| Silver (Ag)        | µg/m³             | 1                | 1                                   | 0                 | 3.03E-04       | 3.04E-04        | 2.85E-04                    | 3.37E-04                    | 3.37E-04                      | 3.10E-04                           | 3.01E-04                              | 13                            | 81              |
| Strontium (Sr)     | µg/m³             | 120              | -                                   | 0                 | 4.78E-03       | 5.29E-03        | 2.56E-03                    | 1.21E-02                    | 1.21E-02                      | 8.11E-03                           | 6.14E-03                              | 13                            | 81              |
| Thallium (TI)      | µg/m³             | -                | -                                   | -                 | 2.73E-05       | 2.73E-05        | 2.56E-05                    | 3.03E-05                    | 3.03E-05                      | 2.79E-05                           | 2.71E-05                              | 13                            | 81              |
| Tin (Sn)           | µg/m³             | 10               | 10                                  | 0                 | 6.38E-04       | 8.76E-04        | 2.85E-04                    | 2.89E-03                    | 2.89E-03                      | 6.81E-04                           | 1.38E-03                              | 13                            | 81              |
| Titanium (Ti)      | µg/m <sup>3</sup> | 120              | -                                   | 0                 | 7.69E-03       | 8.89E-03        | 3.19E-03                    | 1.62E-02                    | 1.62E-02                      | 1.42E-02                           | 1.38E-02                              | 13                            | 81              |
| Uranium (Ur)       | µg/m <sup>3</sup> | 1.5              | -                                   | 0                 | 3.03E-05       | 3.04E-05        | 2.85E-05                    | 3.37E-05                    | 3.37E-05                      | 3.10E-05                           | 3.01E-05                              | 13                            | 81              |
| Vanadium (V)       | µg/m³             | 2                | 1                                   | 0                 | 1.52E-03       | 1.52E-03        | 1.42E-03                    | 1.69E-03                    | 1.69E-03                      | 1.55E-03                           | 1.50E-03                              | 13                            | 81              |
| Zinc (Zn)          | µg/m³             | 120              | -                                   | 0                 | 2.76E-02       | 3.40E-02        | 8.58E-03                    | 1.05E-01                    | 4.89E-02                      | 1.05E-01                           | 5.77E-02                              | 13                            | 81              |
| Zirconium (Zr)     | µg/m³             | 20               | -                                   | 0                 | 6.07E-04       | 6.07E-04        | 5.69E-04                    | 6.74E-04                    | 6.74E-04                      | 6.19E-04                           | 6.02E-04                              | 13                            | 81              |

#### Table 8: Summary of TSP Sampler Rundle Road Station



| 2    | Table 0  | :    |         | af 11a |            | 4   | 41-1- |          |
|------|----------|------|---------|--------|------------|-----|-------|----------|
| J.S. | i able o | 15 a | Summary | or the | statistics | 101 | แทร   | station. |

### 5.7 PAH Results

All of the PUF Hi-Vols operated on a discrete schedule every 12 days for PAH's according to the NAPS schedule during Q3 with the sample days being: July 2, 14, 26, August 7, 19, 31 and September 12 and 24, 2020.

### 5.7.1 Courtice Station Results

Data recovery levels were acceptable for the PAH results at the Courtice Station (75% valid data). There was one (1) exceedance of the Benzo(a) Pyrene AAQC on September 24<sup>th</sup>. There were no other exceedances of any of the AAQC's or HHRA Criteria. According to the Courtice meteorological data, the Courtice Station was downwind of the DYEC part of the time during the September 24<sup>th</sup> sampling period. According to the Courtice meteorological data, the winds were coming from the NE-SSW and it is likely that the measured BaP exceedances may be attributed to industrial sources along the lakeshore with a possible contribution from DYEC in the NE-ENE quadrant. The exceedance documentation is attached in **Appendix E**. **Table 9** outlines the statistics summary for this station.

#### Table 9: Statistics Summary of PAH Results for Courtice Station

| Contaminant                           | Units             | MECP<br>Criteria<br>(µg/m³) | No. ><br>Criteria | Arithmetic<br>Mean | Minimum Q3<br>Concentration | Maximum Q3<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples | % Valid<br>data |
|---------------------------------------|-------------------|-----------------------------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|-----------------|
| 1-Methylnaphthalene                   | ng/m <sup>3</sup> | 12000                       | 0                 | 6.04E+00           | 3.82E+00                    | 1.01E+01                    | 5.64E+00                      | 1.01E+01                           | 8.11E+00                              | 6                             | 75              |
| 2-Methylnaphthalene                   | ng/m <sup>3</sup> | 10000                       | 0                 | 9.76E+00           | 6.57E+00                    | 1.73E+01                    | 1.01E+01                      | 1.73E+01                           | 1.07E+01                              | 6                             | 75              |
| Acenaphthene                          | ng/m <sup>3</sup> | -                           | -                 | 6.60E+00           | 3.15E+00                    | 1.43E+01                    | 6.79E+00                      | 1.43E+01                           | 3.44E+00                              | 6                             | 75              |
| Acenaphthylene                        | ng/m <sup>3</sup> | 3500                        | 0                 | 1.62E-01           | 3.81E-02                    | 3.48E-01                    | 2.51E-01                      | 3.48E-01                           | 1.44E-01                              | 6                             | 75              |
| Anthracene                            | ng/m <sup>3</sup> | 200                         | 0                 | 3.06E-01           | 1.50E-01                    | 5.13E-01                    | 3.68E-01                      | 5.13E-01                           | 2.08E-01                              | 6                             | 75              |
| Benzo(a)Anthracene                    | ng/m <sup>3</sup> | -                           | -                 | 2.05E-02           | 7.27E-03                    | 3.68E-02                    | 1.79E-02                      | 3.61E-02                           | 3.68E-02                              | 6                             | 75              |
| Benzo(a)fluorene                      | ng/m <sup>3</sup> | -                           | -                 | 4.93E-02           | 2.73E-02                    | 7.31E-02                    | 6.64E-02                      | 7.31E-02                           | 5.76E-02                              | 6                             | 75              |
| Benzo(a)Pyrene<br>(Historically High) | ng/m³             | 0.05                        | 1                 | 2.28E-02           | 6.08E-03                    | 5.50E-02                    | 3.14E-02                      | 2.08E-02                           | 5.50E-02                              | 6                             | 75              |
| Benzo(b)Fluoranthene                  | ng/m <sup>3</sup> | -                           | -                 | 3.70E-02           | 1.20E-02                    | 8.91E-02                    | 3.87E-02                      | 3.80E-02                           | 8.91E-02                              | 6                             | 75              |
| Benzo(b)fluorene                      | ng/m <sup>3</sup> | -                           | -                 | 3.43E-02           | 1.58E-02                    | 7.12E-02                    | 3.74E-02                      | 4.15E-02                           | 7.12E-02                              | 6                             | 75              |
| Benzo(e)Pyrene                        | ng/m <sup>3</sup> | -                           | -                 | 2.89E-02           | 9.12E-03                    | 5.56E-02                    | 3.33E-02                      | 3.35E-02                           | 5.56E-02                              | 6                             | 75              |
| Benzo(g,h,i)Perylene                  | ng/m <sup>3</sup> | -                           | -                 | 2.50E-02           | 1.17E-02                    | 5.30E-02                    | 2.73E-02                      | 2.00E-02                           | 5.30E-02                              | 6                             | 75              |
| Benzo(k)Fluoranthene                  | ng/m <sup>3</sup> | -                           | -                 | 3.86E-02           | 1.05E-02                    | 7.48E-02                    | 4.34E-02                      | 5.57E-02                           | 7.48E-02                              | 6                             | 75              |
| Biphenyl                              | ng/m <sup>3</sup> | -                           | -                 | 2.73E+00           | 1.74E+00                    | 4.34E+00                    | 2.33E+00                      | 4.34E+00                           | 3.34E+00                              | 6                             | 75              |
| Chrysene                              | ng/m <sup>3</sup> | -                           | -                 | 8.36E-02           | 4.05E-02                    | 1.51E-01                    | 9.75E-02                      | 9.81E-02                           | 1.51E-01                              | 6                             | 75              |
| Dibenzo(a,h)Anthracene                | ng/m <sup>3</sup> | -                           | -                 | 2.65E-03           | 3.14E-04                    | 8.25E-03                    | 1.88E-03                      | 2.72E-03                           | 8.25E-03                              | 6                             | 75              |
| Fluoranthene                          | ng/m <sup>3</sup> | -                           | -                 | 1.11E+00           | 3.87E-01                    | 1.67E+00                    | 1.62E+00                      | 1.67E+00                           | 7.73E-01                              | 6                             | 75              |
| Fluorene                              | ng/m <sup>3</sup> | -                           | -                 | 3.86E+00           | 2.19E+00                    | 7.12E+00                    | 4.34E+00                      | 7.12E+00                           | 2.41E+00                              | 6                             | 75              |
| Indeno(1,2,3-cd)Pyrene                | ng/m <sup>3</sup> | -                           | -                 | 2.46E-02           | 1.04E-02                    | 4.70E-02                    | 3.00E-02                      | 2.85E-02                           | 4.70E-02                              | 6                             | 75              |
| Naphthalene                           | ng/m <sup>3</sup> | 22500                       | 0                 | 3.11E+01           | 1.31E+01                    | 5.54E+01                    | 2.69E+01                      | 5.54E+01                           | 5.46E+01                              | 6                             | 75              |
| o-Terphenyl                           | ng/m <sup>3</sup> | -                           | -                 | 1.53E-02           | 1.02E-02                    | 3.44E-02                    | 1.06E-02                      | 1.27E-02                           | 3.44E-02                              | 6                             | 75              |
| Perylene                              | ng/m <sup>3</sup> | -                           | -                 | 1.83E-03           | 3.14E-04                    | 5.23E-03                    | 2.05E-03                      | 1.90E-03                           | 5.23E-03                              | 6                             | 75              |
| Phenanthrene                          | ng/m <sup>3</sup> | -                           | -                 | 6.11E+00           | 3.02E+00                    | 1.10E+01                    | 7.39E+00                      | 1.10E+01                           | 3.88E+00                              | 6                             | 75              |
| Pyrene                                | ng/m <sup>3</sup> | -                           | -                 | 6.03E-01           | 3.64E-01                    | 8.52E-01                    | 8.52E-01                      | 8.07E-01                           | 5.23E-01                              | 6                             | 75              |
| Tetralin                              | ng/m <sup>3</sup> | -                           | -                 | 2.56E+00           | 1.38E+00                    | 4.17E+00                    | 2.76E+00                      | 3.20E+00                           | 4.17E+00                              | 6                             | 75              |
| Total PAH                             | ng/m <sup>3</sup> | -                           | -                 | 7.13E+01           | 4.53E+01                    | 1.27E+02                    | 6.45E+01                      | 1.27E+02                           | 9.17E+01                              | 6                             | 75              |



### 5.7.2 Rundle Road Station Results

Data recovery levels were high for the PAH results at the Rundle Road Station (88% valid data). There was one (1) exceedance of the Benzo(a) Pyrene AAQC on September 24<sup>th</sup>. There were no other exceedances of any of the AAQC's or HHRA Criteria. According to the Rundle meteorological data, the Rundle Road Station was upwind of the DYEC during the sampling period. Since the winds were predominantly coming from the Northeast and South, it is likely that the measured BaP exceedances may be attributed to sources other than the Energy Centre operations. The exceedance documentation is attached in Appendix E. Table 10 outlines the statistics summary for this station.

| Contaminant                           | Units             | MECP<br>Criteria<br>(µg/m³) | No. ><br>Criteria | Arithmetic<br>Mean | Minimum Q3<br>Concentration | Maximum Q3<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples |   |
|---------------------------------------|-------------------|-----------------------------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|---|
| 1-Methylnaphthalene                   | ng/m <sup>3</sup> | 12000                       | 0                 | 8.62E+00           | 1.90E+00                    | 1.59E+01                    | 8.18E+00                      | 1.59E+01                           | 1.48E+01                              | 7                             | Γ |
| 2-Methylnaphthalene                   | ng/m <sup>3</sup> | 10000                       | 0                 | 1.51E+01           | 3.01E+00                    | 3.10E+01                    | 1.54E+01                      | 3.10E+01                           | 2.06E+01                              | 7                             |   |
| Acenaphthene                          | ng/m <sup>3</sup> | -                           | -                 | 1.10E+01           | 9.93E-01                    | 2.69E+01                    | 1.37E+01                      | 2.69E+01                           | 8.91E+00                              | 7                             |   |
| Acenaphthylene                        | ng/m <sup>3</sup> | 3500                        | 0                 | 1.49E-01           | 6.47E-02                    | 2.92E-01                    | 2.56E-01                      | 2.92E-01                           | 1.16E-01                              | 7                             |   |
| Anthracene                            | ng/m <sup>3</sup> | 200                         | 0                 | 8.60E-01           | 8.40E-02                    | 2.12E+00                    | 1.33E+00                      | 2.12E+00                           | 4.01E-01                              | 7                             |   |
| Benzo(a)Anthracene                    | ng/m <sup>3</sup> | -                           | -                 | 1.69E-02           | 7.58E-03                    | 2.59E-02                    | 2.59E-02                      | 1.91E-02                           | 2.50E-02                              | 7                             |   |
| Benzo(a)fluorene                      | ng/m <sup>3</sup> | -                           | -                 | 8.66E-02           | 2.56E-02                    | 2.03E-01                    | 2.03E-01                      | 1.43E-01                           | 5.00E-02                              | 7                             |   |
| Benzo(a)Pyrene<br>(Historically High) | ng/m³             | 0.05                        | 1                 | 1.92E-02           | 7.00E-03                    | 6.12E-02                    | 2.19E-02                      | 1.28E-02                           | 6.12E-02                              | 7                             |   |
| Benzo(b)Fluoranthene                  | ng/m <sup>3</sup> | -                           | -                 | 4.11E-02           | 1.48E-02                    | 9.67E-02                    | 3.09E-02                      | 9.67E-02                           | 6.81E-02                              | 7                             |   |
| Benzo(b)fluorene                      | ng/m <sup>3</sup> | -                           | -                 | 5.34E-02           | 1.39E-02                    | 1.25E-01                    | 1.25E-01                      | 7.09E-02                           | 7.30E-02                              | 7                             |   |
| Benzo(e)Pyrene                        | ng/m <sup>3</sup> | -                           | -                 | 2.14E-02           | 1.06E-02                    | 3.59E-02                    | 2.14E-02                      | 2.32E-02                           | 3.59E-02                              | 7                             |   |
| Benzo(g,h,i)Perylene                  | ng/m <sup>3</sup> | -                           | -                 | 2.83E-02           | 1.19E-02                    | 7.61E-02                    | 2.01E-02                      | 7.61E-02                           | 4.21E-02                              | 7                             |   |
| Benzo(k)Fluoranthene                  | ng/m <sup>3</sup> | -                           | -                 | 3.21E-02           | 1.09E-02                    | 5.69E-02                    | 3.85E-02                      | 5.69E-02                           | 4.67E-02                              | 7                             |   |
| Biphenyl                              | ng/m <sup>3</sup> | -                           | -                 | 3.53E+00           | 8.73E-02                    | 7.45E+00                    | 4.09E+00                      | 7.45E+00                           | 4.54E+00                              | 7                             |   |
| Chrysene                              | ng/m <sup>3</sup> | -                           | -                 | 1.07E-01           | 4.31E-02                    | 2.20E-01                    | 2.20E-01                      | 1.45E-01                           | 1.11E-01                              | 7                             |   |
| Dibenzo(a,h)Anthracene                | ng/m <sup>3</sup> | -                           | -                 | 2.30E-03           | 3.38E-04                    | 6.74E-03                    | 1.51E-03                      | 2.68E-03                           | 6.74E-03                              | 7                             |   |
| Fluoranthene                          | ng/m <sup>3</sup> | -                           | -                 | 3.00E+00           | 4.02E-01                    | 6.18E+00                    | 5.84E+00                      | 6.18E+00                           | 1.50E+00                              | 7                             |   |
| Fluorene                              | ng/m <sup>3</sup> | -                           | -                 | 7.19E+00           | 8.63E-01                    | 1.65E+01                    | 1.08E+01                      | 1.65E+01                           | 4.77E+00                              | 7                             |   |
| Indeno(1,2,3-cd)Pyrene                | ng/m <sup>3</sup> | -                           | -                 | 2.14E-02           | 9.56E-03                    | 3.21E-02                    | 2.04E-02                      | 3.00E-02                           | 3.21E-02                              | 7                             |   |
| Naphthalene                           | ng/m <sup>3</sup> | 22500                       | 0                 | 3.24E+01           | 7.52E+00                    | 8.39E+01                    | 2.21E+01                      | 5.98E+01                           | 8.39E+01                              | 7                             |   |
| o-Terphenyl                           | ng/m <sup>3</sup> | -                           | -                 | 1.71E-02           | 8.76E-03                    | 3.98E-02                    | 1.09E-02                      | 2.10E-02                           | 3.98E-02                              | 7                             |   |
| Perylene                              | ng/m <sup>3</sup> | -                           | -                 | 1.55E-03           | 3.38E-04                    | 2.61E-03                    | 8.72E-04                      | 2.61E-03                           | 2.34E-03                              | 7                             |   |
| Phenanthrene                          | ng/m <sup>3</sup> | -                           | -                 | 1.34E+01           | 1.83E+00                    | 3.06E+01                    | 2.17E+01                      | 3.06E+01                           | 7.57E+00                              | 7                             |   |
| Pyrene                                | ng/m <sup>3</sup> | -                           | -                 | 1.35E+00           | 2.14E-01                    | 2.74E+00                    | 2.74E+00                      | 2.61E+00                           | 6.63E-01                              | 7                             |   |
| Tetralin                              | ng/m <sup>3</sup> | -                           | -                 | 3.46E+00           | 1.12E+00                    | 1.29E+01                    | 2.63E+00                      | 2.85E+00                           | 1.29E+01                              | 7                             |   |
| Total PAH                             | ng/m <sup>3</sup> | -                           | -                 | 1.00E+02           | 1.85E+01                    | 2.03E+02                    | 9.99E+01                      | 2.03E+02                           | 1.61E+02                              | 7                             |   |

Table 10: Statistics Summary of PAH Results for Rundle Road Station



| %<br>Valid<br>data |
|--------------------|
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |
| 88                 |

### 5.8 Dioxin and Furan Results

All of the PUF Hi-Vols operated on a discrete schedule every 24 days for D&F's according to the NAPS schedule during Q3 with the sample days being: July 2, July 26, August 19 and September 12, 2020.

### 5.8.1 Courtice Station Results

Data recovery levels were low for the D&F results at the Courtice Station (50% valid data). There were no exceedances of any of the AAQC's or HHRA Criteria for any of the D&F's during Q3. Table 11 is a summary of the statistics for this station.

#### Table 11: Courtice Station Q3 Monitoring Results for Dioxins and Furans

| Contaminant             | Units                 | MECP<br>Criteria        | HHRA<br>Health<br>Based<br>Criteria | No. > Criteria | Arithmetic<br>Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples | % Valid<br>data |
|-------------------------|-----------------------|-------------------------|-------------------------------------|----------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|-----------------|
| 2,3,7,8-TCDD            | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 7.23E-04                    | 9.27E-04                    | 7.23E-04                      | -                                  | 9.27E-04                              | 2                             | 50              |
| 1,2,3,7,8-PeCDD         | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 6.82E-04                    | 1.67E-03                    | 1.67E-03                      | -                                  | 6.82E-04                              | 2                             | 50              |
| 1,2,3,4,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 4.72E-05                    | 1.15E-04                    | 4.72E-05                      | -                                  | 1.15E-04                              | 2                             | 50              |
| 1,2,3,6,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 1.01E-04                    | 2.08E-04                    | 2.08E-04                      | -                                  | 1.01E-04                              | 2                             | 50              |
| 1,2,3,7,8,9-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 2.01E-04                    | 3.71E-04                    | 2.01E-04                      | -                                  | 3.71E-04                              | 2                             | 50              |
| 1,2,3,4,6,7,8-HpCDD     | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 1.40E-04                    | 2.35E-04                    | 2.35E-04                      | -                                  | 1.40E-04                              | 2                             | 50              |
| OCDD                    | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 2.15E-05                    | 3.21E-05                    | 3.21E-05                      | -                                  | 2.15E-05                              | 2                             | 50              |
| 2,3,7,8-TCDF            | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 3.93E-05                    | 1.12E-04                    | 3.93E-05                      | -                                  | 1.12E-04                              | 2                             | 50              |
| 1,2,3,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 1.98E-05                    | 3.04E-05                    | 1.98E-05                      | -                                  | 3.04E-05                              | 2                             | 50              |
| 2,3,4,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 1.75E-04                    | 5.24E-04                    | 1.75E-04                      | -                                  | 5.24E-04                              | 2                             | 50              |
| 1,2,3,4,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 1.22E-04                    | 1.32E-04                    | 1.32E-04                      | -                                  | 1.22E-04                              | 2                             | 50              |
| 1,2,3,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 4.25E-05                    | 8.39E-05                    | 4.25E-05                      | -                                  | 8.39E-05                              | 2                             | 50              |
| 2,3,4,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 2.11E-04                    | 3.71E-04                    | 2.11E-04                      | -                                  | 3.71E-04                              | 2                             | 50              |
| 1,2,3,7,8,9-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 1.32E-04                    | 1.75E-04                    | 1.32E-04                      | -                                  | 1.75E-04                              | 2                             | 50              |
| 1,2,3,4,6,7,8-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 4.69E-05                    | 8.57E-05                    | 4.69E-05                      | -                                  | 8.57E-05                              | 2                             | 50              |
| 1,2,3,4,7,8,9-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 8.33E-06                    | 1.24E-05                    | 8.33E-06                      | -                                  | 1.24E-05                              | 2                             | 50              |
| OCDF                    | pg/m <sup>3</sup>     | -                       | -                                   | -              | -                  | 2.75E-06                    | 3.46E-06                    | 2.75E-06                      | -                                  | 3.46E-06                              | 2                             | 50              |
| Total Toxic Equivalency | pg TEQ/m <sup>3</sup> | 0.1<br>1 <sup>[1]</sup> | -                                   | 0              | -                  | 3.88E-03                    | 3.92E-03                    | 3.92E-03                      | -                                  | 3.88E-03                              | 2                             | 50              |

Note: All non-detectable results were reported as 1/2 of the detection limit [1] O. Reg. 419/05 Schedule Upper Risk Thresholds

Arithmetic mean is not provided as data validity criteria were not met



### 5.8.2 Rundle Road Station Results

Data recovery levels were acceptable for the D&F results at the Rundle Road Station (75% valid data). There were no exceedances of any of the AAQC's or HHRA Criteria for any of the D&F's during Q3. Table 12 is a summary of the statistics for this station.

| Contaminant             | Units                 | MECP<br>Criteria        | HHRA<br>Health<br>Based<br>Criteria | No. > Criteria | Arithmetic<br>Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples | % Valid<br>data |
|-------------------------|-----------------------|-------------------------|-------------------------------------|----------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|-----------------|
| 2,3,7,8-TCDD            | pg/m <sup>3</sup>     | -                       | -                                   | -              | 8.67E-04           | 4.56E-04                    | 1.21E-03                    | 4.56E-04                      | 1.21E-03                           | 9.36E-04                              | 3                             | 75              |
| 1,2,3,7,8-PeCDD         | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.30E-03           | 7.52E-04                    | 2.33E-03                    | 2.33E-03                      | 7.52E-04                           | 8.05E-04                              | 3                             | 75              |
| 1,2,3,4,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.33E-04           | 1.05E-04                    | 1.49E-04                    | 1.49E-04                      | 1.05E-04                           | 1.46E-04                              | 3                             | 75              |
| 1,2,3,6,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 2.70E-04           | 7.35E-05                    | 4.16E-04                    | 3.21E-04                      | 7.35E-05                           | 4.16E-04                              | 3                             | 75              |
| 1,2,3,7,8,9-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.20E-04           | 9.31E-05                    | 1.72E-04                    | 9.46E-05                      | 9.31E-05                           | 1.72E-04                              | 3                             | 75              |
| 1,2,3,4,6,7,8-HpCDD     | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.70E-04           | 4.74E-05                    | 3.17E-04                    | 3.17E-04                      | 4.74E-05                           | 1.46E-04                              | 3                             | 75              |
| OCDD                    | pg/m <sup>3</sup>     | -                       | -                                   | -              | 3.03E-05           | 5.88E-06                    | 4.78E-05                    | 4.78E-05                      | 5.88E-06                           | 3.71E-05                              | 3                             | 75              |
| 2,3,7,8-TCDF            | pg/m <sup>3</sup>     | -                       | -                                   | -              | 8.53E-05           | 5.07E-05                    | 1.10E-04                    | 5.07E-05                      | 9.48E-05                           | 1.10E-04                              | 3                             | 75              |
| 1,2,3,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | -              | 5.11E-05           | 1.82E-05                    | 1.09E-04                    | 1.82E-05                      | 2.60E-05                           | 1.09E-04                              | 3                             | 75              |
| 2,3,4,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | -              | 2.76E-04           | 2.43E-04                    | 3.26E-04                    | 2.43E-04                      | 2.60E-04                           | 3.26E-04                              | 3                             | 75              |
| 1,2,3,4,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.12E-04           | 6.21E-05                    | 1.42E-04                    | 1.42E-04                      | 6.21E-05                           | 1.33E-04                              | 3                             | 75              |
| 1,2,3,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 6.52E-05           | 4.58E-05                    | 9.74E-05                    | 5.24E-05                      | 4.58E-05                           | 9.74E-05                              | 3                             | 75              |
| 2,3,4,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.48E-04           | 6.54E-05                    | 2.06E-04                    | 1.72E-04                      | 6.54E-05                           | 2.06E-04                              | 3                             | 75              |
| 1,2,3,7,8,9-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.90E-04           | 8.33E-05                    | 3.71E-04                    | 1.15E-04                      | 8.33E-05                           | 3.71E-04                              | 3                             | 75              |
| 1,2,3,4,6,7,8-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | -              | 5.25E-05           | 1.69E-05                    | 1.12E-04                    | 1.69E-05                      | 2.81E-05                           | 1.12E-04                              | 3                             | 75              |
| 1,2,3,4,7,8,9-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.32E-05           | 5.39E-06                    | 2.20E-05                    | 2.20E-05                      | 5.39E-06                           | 1.22E-05                              | 3                             | 75              |
| OCDF                    | pg/m <sup>3</sup>     | -                       | -                                   | -              | 1.88E-06           | 4.12E-07                    | 3.20E-06                    | 2.02E-06                      | 4.12E-07                           | 3.20E-06                              | 3                             | 75              |
| Total Toxic Equivalency | pg TEQ/m <sup>3</sup> | 0.1<br>1 <sup>[1]</sup> | -                                   | 0              | 3.88E-03           | 2.96E-03                    | 4.55E-03                    | 4.55E-03                      | 2.96E-03                           | 4.14E-03                              | 3                             | 75              |

#### Table 12: Rundle Road Station Q3 Monitoring Results for Dioxins and Furans

Note: All non-detectable results were reported as 1/2 of the detection limit

[1] O. Reg. 419/05 Schedule Upper Risk Thresholds



# 6 DATA REQUESTS

The following sections outline any instrumentation issues encountered that have caused data loss at any of the monitors at each of the stations.

Appendix C contains monthly IZS zero trends for the NOx and SO<sub>2</sub> analyzers at the Courtice and Rundle Road Stations.

Edit logs identifying missing data, maintenance times, calibrations and any other missing data have been included in Appendix D.

### 6.1 Continuous Monitoring

The concrete base for the new Rundle Road Meteorological tower was poured on August 9, 2020. Installation of the new tower and the migration of the existing meteorological equipment occurred on August 20<sup>th</sup>. All of the instrumentation was calibrated and passed the respective validation criteria. Calibrations were also performed on the meteorological instrumentation at the Courtice Station, as well as the Courtice WWTP wind head on August 20<sup>th</sup>. All of the meteorological instrumentation at the courtice Station criteria; however, the WWTP wind head was found to report slightly lower wind speed than expected during the calibration. It was recommended that WWTP instrumentation personnel further look into the issue.

On August 27, 2020, RWDI personnel responded to an observed reduction in ozone flow rate and drifting overnight span on the NOx analyzer at the Courtice station. While calibration checks confirmed that the unit was still running well within specifications, it was decided to remove the analyzer for further troubleshooting, and a replacement unit was installed.

On August 27, 2020, the NOx pump at the Rundle Road Station was replaced with a rebuilt spare pump.

On September 2, 2020, annual maintenance was performed on the Rundle Road SO<sub>2</sub> unit, including a pump rebuild and maintenance of the critical flow orifices.

### 6.2 Discrete Monitoring

The PUF samples taken at Courtice and Rundle Road Stations on July 26, 2020 and Courtice Station on August 19<sup>th</sup> were invalidated due to volume sampled <300m<sup>3</sup> based on MECP criteria. New motors were installed on August 9<sup>th</sup> to try to overcome this issue. A very slight improvement in the PS-1 flow rates resulted from installation of the new blower motors, however it was confirmed that the flow restriction is being caused by the sampling media itself. After discussion with the ALS Laboratory Special Chemistries and Air Toxics Director it was confirmed that due to the combined polyurethane foam and the resin media creating increased resistance that it would be hard to consistently achieve a sampled volume of 300 m<sup>3</sup>. It was his belief that the combined media had advantages over the PUF only



cartridge and switching to achieve the MECP minimum sample volume would compromise the capture efficiency of the low molecular weight PAH's including naphthalene and biphenyl. He confirmed that the lab can get a sufficient sample for BaP from the combined cartridge with a sample size as low as 200 m<sup>3</sup>. Given this information, and since the detection limits were being met for all of the PAH's for samples submitted that were less than 300 m<sup>3</sup>, the samples <300 m<sup>3</sup> on the September 12<sup>th</sup> sample date were submitted and reported as valid samples.

The Rundle Road TSP samples taken on July 20<sup>th</sup> and August 1<sup>st</sup> were invalid as birds had damaged the filters. Chicken wire was installed between the gabled roof and hivol body to prevent birds from getting in and onto the filter.

The Rundle Road TSP sample taken on September 6<sup>th</sup> was invalidated as excessive volume was captured during the run period.

## 7 CONCLUSIONS

This Q3 report provides a summary of the ambient air quality data collected at the Courtice and Rundle Road Stations. Throughout this monitoring period there were two (2) exceedances of the AAQC for Benzo(a) Pyrene which occurred on September 24<sup>th</sup> at the Courtice and Rundle Road Stations, there were two (2) exceedance events of the rolling 10-minute SO<sub>2</sub> AAQC and two (2) exceedance events of the rolling 1-hour SO<sub>2</sub> AAQC at the Courtice Station, and there was one (1) exceedance event of the rolling SO<sub>2</sub> 10-minute AAQC and one (1) exceedance event of the rolling 1-hour SO<sub>2</sub> AAQC at the Rundle Road Station. Data recovery rates were acceptable and valid for all measured Q3 continuous parameters and all discrete parameters with the exception of dioxin and furan results.

## 8 **REFERENCES**

- 1. Canadian Council of Ministers of the Environment (CCME), 2012. Guidance Document on Achievement Determination Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone. PN 1483 978-1-896997-91-9 PDF
- 2. Canadian Council of Ministers of the Environment (CCME), 2019. Guidance Document on Air Zone Management. PN 1593 978-1-77202-050-2 PDF
- 3. Ontario Ministry of the Environment and Climate Change, 2018. [Technical Assessment and Standards Development Branch] Ontario Air Standards for Sulphur Dioxide (SO<sub>2</sub>). [Online]
- 4. Ontario Ministry of the Environment and Climate Change, 2012. [Standards Development Branch] Ontario's Ambient Air Quality Criteria (Sorted by Contaminant Name). PIBS #6570e01




#### Table A1: 2020 Summary Statistics for Q3

| Courtice<br>Monitoring Station<br>Data Statistics | Maximum 10 min<br>Rolling Mean | Ma                   | ximum | 1 hr Ro | olling M        | ean             | Ма                   | ximum           | 24 hr R | olling M        | ean             |                      | Mon             | thly M | ean             |                 |                   | % \             | valid ho | ours            |                 |
|---------------------------------------------------|--------------------------------|----------------------|-------|---------|-----------------|-----------------|----------------------|-----------------|---------|-----------------|-----------------|----------------------|-----------------|--------|-----------------|-----------------|-------------------|-----------------|----------|-----------------|-----------------|
| Compound                                          | SO <sub>2</sub>                | PM <sub>2.5</sub>    | NOx   | NO      | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub>    | NO <sub>x</sub> | NO      | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub>    | NO <sub>x</sub> | NO     | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | NO <sub>x</sub> | NO       | NO <sub>2</sub> | SO <sub>2</sub> |
| Units                                             | ppb                            | (µg/m <sup>3</sup> ) |       | F       | opb             | -               | (µg/m <sup>3</sup> ) |                 |         | ppb             |                 | (µg/m <sup>3</sup> ) |                 | р      | ob              |                 |                   |                 | (%)      |                 |                 |
| AAQC/CAAQS                                        | 67                             |                      |       |         | 200             | 40              | 27 <sup>A</sup>      |                 |         | 100             |                 |                      |                 |        |                 |                 |                   |                 |          |                 |                 |
| July                                              | 20.1                           | 42.7                 | 34.9  | 14.9    | 28.3            | 13.9            | 14.6                 | 9.4             | 2.8     | 7.7             | 1.8             | 6.2                  | 3.7             | 0.6    | 3.2             | 0.3             | 99.6              | 99.7            | 99.7     | 99.7            | 99.5            |
| August                                            | 109.7                          | 22.5                 | 39.9  | 29.2    | 26.1            | 54.2            | 14.0                 | 15.3            | 7.1     | 9.5             | 5.0             | 5.4                  | 4.7             | 1.0    | 3.7             | 1.5             | 99.6              | 98.3            | 98.3     | 98.3            | 99.6            |
| September                                         | 55.0                           | 39.5                 | 62.8  | 37.5    | 38.6            | 39.6            | 16.9                 | 16.2            | 3.9     | 14.7            | 8.3             | 5.0                  | 4.7             | 1.0    | 3.7             | 2.1             | 99.7              | 99.7            | 99.7     | 99.7            | 99.6            |
| Q3 Arithmetic Mean                                |                                |                      |       |         |                 |                 |                      |                 |         |                 |                 | 5.5                  | 4.4             | 0.9    | 3.5             | 1.3             | 99.6              | 99.2            | 99.2     | 99.2            | 99.5            |

| Rundle Monitoring<br>Station Data<br>Statistics | Maximum 10 min<br>Rolling Mean | Ma                   | ximum | 1 hr Ro | olling M        | ean             | Ma                | ximum | 24 hr F | tolling M       | ean             |                   | Mon             | thly M | ean             |                 |                   | % \  | valid ho | ours            |                 |
|-------------------------------------------------|--------------------------------|----------------------|-------|---------|-----------------|-----------------|-------------------|-------|---------|-----------------|-----------------|-------------------|-----------------|--------|-----------------|-----------------|-------------------|------|----------|-----------------|-----------------|
| Compound                                        | SO <sub>2</sub>                | PM <sub>2.5</sub>    | NOx   | NO      | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | NOx   | NO      | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | NO <sub>x</sub> | NO     | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | NOx  | NO       | NO <sub>2</sub> | SO <sub>2</sub> |
| Units                                           | ppb                            | (µg/m <sup>3</sup> ) |       | þ       | opb             |                 | (µg/m³)           |       |         | ppb             |                 | (µg/m³)           |                 | р      | pb              |                 |                   |      | (%)      |                 |                 |
| AAQC/CAAQS                                      | 67                             |                      |       |         | 200             | 40              | 27 <sup>A</sup>   |       |         | 100             |                 |                   |                 |        |                 |                 |                   |      |          |                 |                 |
| July                                            | 4.6                            | 28.3                 | 21.3  | 11.0    | 13.9            | 3.6             | 11.8              | 6.6   | 1.5     | 5.4             | 1.2             | 5.1               | 3.0             | 0.6    | 2.6             | 0.3             | 99.7              | 99.7 | 99.7     | 99.7            | 99.7            |
| August                                          | 34.3                           | 23.1                 | 30.5  | 16.8    | 17.7            | 22.8            | 13.2              | 9.2   | 2.1     | 7.6             | 1.7             | 4.4               | 3.2             | 0.8    | 2.5             | 0.4             | 99.9              | 99.5 | 99.5     | 99.5            | 99.9            |
| September                                       | 67.8                           | 30.6                 | 34.9  | 19.9    | 20.7            | 41.5            | 13.6              | 9.0   | 2.5     | 6.8             | 4.6             | 4.0               | 3.0             | 0.7    | 2.6             | 0.3             | 99.7              | 99.6 | 99.6     | 99.6            | 99.0            |
| Q3 Arithmetic Mean                              |                                |                      |       |         |                 |                 |                   |       |         |                 |                 | 4.5               | 3.1             | 0.7    | 2.6             | 0.3             | 99.8              | 99.6 | 99.6     | 99.6            | 99.5            |

| Event Statistics | Rolling Mean > 10<br>min AAQC for<br>Courtice | Rolling Mean > 10<br>min AAQC for Rundle | Rolli<br>AAC      | ng Mean<br>(C for Co | > 1 hr<br>urtice | Rollir<br>AAC     | ng Meai<br>(C for R | n > 1 hr<br>undle | Rolling<br>AAQC<br>Monit | g Mean ><br>C for Cou<br>toring St | 24 hr<br>rtice<br>ation | Rolling<br>AAQ<br>Monit | Mean :<br>C for Ru<br>oring Si | > 24 hr<br>ındle<br>tation |
|------------------|-----------------------------------------------|------------------------------------------|-------------------|----------------------|------------------|-------------------|---------------------|-------------------|--------------------------|------------------------------------|-------------------------|-------------------------|--------------------------------|----------------------------|
| Compound         | SO <sub>2</sub>                               | SO <sub>2</sub>                          | PM <sub>2.5</sub> | NO <sub>2</sub>      | SO <sub>2</sub>  | PM <sub>2.5</sub> | NO <sub>2</sub>     | SO <sub>2</sub>   | PM <sub>2.5</sub>        | NO <sub>2</sub>                    | SO <sub>2</sub>         | PM <sub>2.5</sub>       | NO <sub>2</sub>                | $SO_2$                     |
| Units            | No.                                           | No.                                      |                   | No.                  |                  |                   | No.                 |                   |                          | No.                                |                         |                         | No.                            |                            |
| July             | 0                                             | 0                                        |                   | 0                    | 0                |                   | 0                   | 0                 | N/A                      | 0                                  |                         | N/A                     | 0                              |                            |
| August           | 2                                             | 0                                        |                   | 0                    | 2                |                   | 0                   | 0                 | N/A                      | 0                                  |                         | N/A                     | 0                              |                            |
| September        | 0                                             | 1                                        |                   | 0                    | 0                |                   | 0                   | 1                 | N/A                      | 0                                  |                         | N/A                     | 0                              |                            |
| Q3 Total         | 2                                             | 1                                        |                   | 0                    | 2                |                   | 0                   | 1                 | N/A                      | 0                                  |                         | N/A                     | 0                              |                            |

| Courtice Station MET Statistics |         | Maxim | um 1 h | r Mean |      |         | Minim | ium 1 h | r Mean |      |         | Mon  | thly Me | ean  |      | Total |       |       | % valio | l hours |       |       |
|---------------------------------|---------|-------|--------|--------|------|---------|-------|---------|--------|------|---------|------|---------|------|------|-------|-------|-------|---------|---------|-------|-------|
| Parameter                       | WS      | Temp  | RH     | Pres   | Rain | WS      | Temp  | RH      | Pres   | Rain | WS      | Temp | RH      | Pres | Rain | Rain  | WS    | WD    | Temp    | RH      | Pres  | Rain  |
| Units                           | (km/hr) | (°C)  | (%)    | "Hg    | mm   | (km/hr) | (°C)  | (%)     | "Hg    | mm   | (km/hr) | (°C) | (%)     | "Hg  | mm   | mm    |       |       | (9      | %)      |       |       |
| July                            | 24      | 33    | 98     | 29.9   | 5.9  | 0       | 16    | 34      | 29.3   | 0.0  | 9       | 23   | 74      | 29.6 | 0.0  | 33.9  | 100.0 | 100.0 | 99.7    | 99.7    | 99.7  | 99.7  |
| August                          | 38      | 29    | 98     | 29.9   | 16.1 | 0       | 11    | 36      | 29.1   | 0.0  | 10      | 21   | 73      | 29.6 | 0.1  | 98.7  | 99.6  | 99.6  | 100.0   | 100.0   | 100.0 | 100.0 |
| September                       | 38      | 25    | 97     | 30.3   | 6.1  | 1       | 3     | 32      | 29.2   | 0.0  | 11      | 16   | 72      | 29.8 | 0.1  | 39.3  | 100.0 | 100.0 | 100.0   | 100.0   | 100.0 | 100.0 |
| Q3 Arithmetic Mean              |         |       |        |        |      |         |       |         |        |      | 10      | 20   | 73      | 29.7 | 0.1  | 171.9 | 99.9  | 99.9  | 99.9    | 99.9    | 99.9  | 99.9  |

| Rundle Station MET Statistics | Мах     | kimum 1 | hr Me | ean  | Mi      | nimum 1 | hr Mea | an   |         | Monthly | / Mean |      | Total |       | % ۱  | valid ho | urs   |       |
|-------------------------------|---------|---------|-------|------|---------|---------|--------|------|---------|---------|--------|------|-------|-------|------|----------|-------|-------|
| Parameter                     | WS      | Temp    | RH    | Rain | WS      | Temp    | RH     | Rain | WS      | Temp    | RH     | Rain | Rain  | WS    | WD   | Temp     | RH    | Rain  |
| Units                         | (km/hr) | (°C)    | (%)   | mm   | (km/hr) | (°C)    | (%)    | mm   | (km/hr) | (°C)    | (%)    | mm   | mm    |       |      | (%)      |       |       |
| July                          | 27      | 34      | 96    | 5.7  | 0       | 15      | 33     | 0.0  | 8       | 23      | 71     | 0.0  | 31.9  | 100.0 | 91.8 | 100.0    | 100.0 | 100.0 |
| August                        | 26      | 29      | 99    | 9.4  | 0       | 9       | 35     | 0.0  | 8       | 21      | 73     | 0.1  | 83.8  | 99.6  | 88.6 | 99.6     | 99.6  | 99.7  |
| September                     | 32      | 26      | 100   | 6.1  | 0       | 1       | 33     | 0.0  | 8       | 16      | 73     | 0.1  | 45.9  | 100.0 | 96.4 | 100.0    | 100.0 | 100.0 |
| Q3 Arithmetic Mean            |         |         |       |      |         |         |        |      | 8       | 20      | 72     | 0.1  | 161.6 | 99.9  | 92.2 | 99.9     | 99.9  | 99.9  |

# Table A2: 2020 Q3 Station Courtice Monitoring Results for $PM_{2.5}$

| Data Statistics | Rolling Mean<br>> 24 hr AAQC | Arithmetic<br>Mean   | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data      |
|-----------------|------------------------------|----------------------|---------------------------------|----------------------------------|--------------------------|-------------------|
| Month           | PM <sub>2.5</sub>            | PM <sub>2.5</sub>    | PM <sub>2.5</sub>               | PM <sub>2.5</sub>                | PM <sub>2.5</sub>        | PM <sub>2.5</sub> |
| Wonth           | No.                          | (ug/m <sup>3</sup> ) | (ug/m <sup>3</sup> )            | (ug/m <sup>3</sup> )             | No.                      | %                 |
| July            | N/A                          | 6.2                  | 42.7                            | 14.6                             | 741                      | 99.6              |
| August          | N/A                          | 5.4                  | 22.5                            | 14.0                             | 741                      | 99.6              |
| September       | N/A                          | 5.0                  | 39.5                            | 16.9                             | 718                      | 99.7              |

| Table A3: 2020 Q | <b>3 Station Rundle</b> | Monitoring | Results for PM <sub>2.5</sub> |
|------------------|-------------------------|------------|-------------------------------|
|------------------|-------------------------|------------|-------------------------------|

| Data Statistics | Rolling Mean<br>> 24 hr AAQC | Arithmetic<br>Mean   | Maximum 1<br>hr Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data      |
|-----------------|------------------------------|----------------------|----------------------|----------------------------------|--------------------------|-------------------|
| Month           | PM <sub>2.5</sub>            | PM <sub>2.5</sub>    | PM <sub>2.5</sub>    | PM <sub>2.5</sub>                | PM <sub>2.5</sub>        | PM <sub>2.5</sub> |
|                 | No.                          | (ug/m <sup>3</sup> ) | (ug/m <sup>3</sup> ) | (ug/m <sup>3</sup> )             | No.                      | %                 |
| July            | N/A                          | 5.1                  | 28.3                 | 11.8                             | 742                      | 99.7              |
| August          | N/A                          | 4.4                  | 23.1                 | 13.2                             | 743                      | 99.9              |
| September       | N/A                          | 4.0                  | 30.6                 | 13.6                             | 718                      | 99.7              |

# Table A4: 2020 Q3 Station Courtice Monitoring Results for NOx

| Data Statistics | Events > 1 hr<br>AAQC | Events > 24 hr<br>AAQC | Arithmetic<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data    |
|-----------------|-----------------------|------------------------|--------------------|---------------------------------|----------------------------------|--------------------------|-----------------|
| Month           | NO <sub>x</sub>       | NO <sub>x</sub>        | NO <sub>x</sub>    | NO <sub>x</sub>                 | NO <sub>x</sub>                  | NO <sub>x</sub>          | NO <sub>x</sub> |
|                 | No.                   | No.                    | (ppb)              | (ppb)                           | (ppb)                            | No.                      | %               |
| July            | N/A                   | N/A                    | 3.7                | 34.9                            | 9.4                              | 742                      | 99.7            |
| August          | N/A                   | N/A                    | 4.7                | 39.9                            | 15.3                             | 731                      | 98.3            |
| September       | N/A                   | N/A                    | 4.7                | 62.8                            | 16.2                             | 718                      | 99.7            |

## Table A5: 2020 Q3 Station Rundle Monitoring Results for NOx

| Data Statistics | Events > 1 hr<br>AAQC | Events > 24 hr<br>AAQC | Arithmetic<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data    |
|-----------------|-----------------------|------------------------|--------------------|---------------------------------|----------------------------------|--------------------------|-----------------|
| Month           | NO <sub>x</sub>       | NO <sub>x</sub>        | NO <sub>x</sub>    | NO <sub>x</sub>                 | NO <sub>x</sub>                  | NO <sub>x</sub>          | NO <sub>x</sub> |
|                 | No.                   | No.                    | (ppb)              | (ppb)                           | (ppb)                            | No.                      | %               |
| July            | N/A                   | N/A                    | 3.0                | 21.3                            | 6.6                              | 742                      | 99.7            |
| August          | N/A                   | N/A                    | 3.2                | 30.5                            | 9.2                              | 740                      | 99.5            |
| September       | N/A                   | N/A                    | 3.0                | 34.9                            | 9.0                              | 717                      | 99.6            |

# Table A6: 2020 Q3 Station Courtice Monitoring Results for NO

| Data Statistics | Events > 1 hr<br>AAQC | Events > 24 hr<br>AAQC | Arithmetic<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data |
|-----------------|-----------------------|------------------------|--------------------|---------------------------------|----------------------------------|--------------------------|--------------|
| Month           | NO                    | NO                     | NO                 | NO                              | NO                               | NO                       | NO           |
| WORLD           | No.                   | No.                    | (ppb)              | (ppb)                           | (ppb)                            | No.                      | %            |
| July            | N/A                   | N/A                    | 0.6                | 14.9                            | 2.8                              | 742                      | 99.7         |
| August          | N/A                   | N/A                    | 1.0                | 29.2                            | 7.1                              | 731                      | 98.3         |
| September       | N/A                   | N/A                    | 1.0                | 37.5                            | 3.9                              | 718                      | 99.7         |

# Table A7: 2020 Q3 Station Rundle Monitoring Results for NO

| Data Statistics | Events > 1 hr<br>AAQC | Events > 24 hr<br>AAQC | Arithmetic<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data |
|-----------------|-----------------------|------------------------|--------------------|---------------------------------|----------------------------------|--------------------------|--------------|
| Month           | NO                    | NO                     | NO                 | NO                              | NO                               | NO                       | NO           |
|                 | No.                   | No.                    | (ppb)              | (ppb)                           | (ppb)                            | No.                      | %            |
| July            | N/A                   | N/A                    | 0.6                | 11.0                            | 1.5                              | 742                      | 99.7         |
| August          | N/A                   | N/A                    | 0.8                | 16.8                            | 2.1                              | 740                      | 99.5         |
| September       | N/A                   | N/A                    | 0.7                | 19.9                            | 2.5                              | 717                      | 99.6         |

# Table A8: 2020 Q3 Station Courtice Monitoring Results for NO<sub>2</sub>

| Data Statistics | Events > 1 hr<br>AAQC | Rolling Mean<br>> 24 hr AAQC | Arithmetic<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data    |
|-----------------|-----------------------|------------------------------|--------------------|---------------------------------|----------------------------------|--------------------------|-----------------|
| Month           | NO <sub>2</sub>       | NO <sub>2</sub>              | NO <sub>2</sub>    | NO <sub>2</sub>                 | NO <sub>2</sub>                  | NO <sub>2</sub>          | NO <sub>2</sub> |
|                 | No.                   | No.                          | (ppb)              | (ppb)                           | (ppb)                            | No.                      | %               |
| July            | 0                     | 0                            | 3.2                | 28.3                            | 7.7                              | 742                      | 99.7            |
| August          | 0                     | 0                            | 3.7                | 26.1                            | 9.5                              | 731                      | 98.3            |
| September       | 0                     | 0                            | 3.7                | 38.6                            | 14.7                             | 718                      | 99.7            |

# Table A9: 2020 Q3 Station Rundle Monitoring Results for $\mathrm{NO}_{\mathrm{2}}$

| Data Statistics | Events > 1 hr<br>AAQC | Rolling Mean<br>> 24 hr AAQC | Arithmetic<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data    |
|-----------------|-----------------------|------------------------------|--------------------|---------------------------------|----------------------------------|--------------------------|-----------------|
| Month           | NO <sub>2</sub>       | NO <sub>2</sub>              | NO <sub>2</sub>    | NO <sub>2</sub>                 | NO <sub>2</sub>                  | NO <sub>2</sub>          | NO <sub>2</sub> |
| wonth           | No.                   | No.                          | (ppb)              | (ppb)                           | (ppb)                            | No.                      | %               |
| July            | 0                     | 0                            | 2.6                | 13.9                            | 5.4                              | 742                      | 99.7            |
| August          | 0                     | 0                            | 2.5                | 17.7                            | 7.6                              | 740                      | 99.5            |
| September       | 0                     | 0                            | 2.6                | 20.7                            | 6.8                              | 717                      | 99.6            |

# Table A10: 2020 Q3 Station Courtice Monitoring Results for $SO_2$

| Data Statistics | Events ><br>10 min<br>AAQC | Events ><br>1 hr<br>AAQC | Arithmetic<br>Mean | Maximum 10<br>min Rolling<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data    |
|-----------------|----------------------------|--------------------------|--------------------|-----------------------------------|---------------------------------|----------------------------------|--------------------------|-----------------|
| Month           | SO <sub>2</sub>            | SO <sub>2</sub>          | SO <sub>2</sub>    | SO <sub>2</sub>                   | SO <sub>2</sub>                 | SO <sub>2</sub>                  | SO <sub>2</sub>          | SO <sub>2</sub> |
| Wonth           | No.                        | No.                      | (ppb)              | (ppb)                             | (ppb)                           | (ppb)                            | No.                      | %               |
| July            | 0                          | 0                        | 0.3                | 20.1                              | 13.9                            | 1.8                              | 740                      | 99.5            |
| August          | 2                          | 2                        | 1.5                | 109.7                             | 54.2                            | 5.0                              | 741                      | 99.6            |
| September       | 0                          | 0                        | 2.1                | 55.0                              | 39.6                            | 8.3                              | 717                      | 99.6            |

# Table A11: 2020 Q3 Station Rundle Monitoring Results for $SO_2$

| Data Statistics | Events ><br>10 min<br>AAQC | Events ><br>1 hr<br>AAQC | Arithmetic<br>Mean | Maximum 10<br>min Rolling<br>Mean | Maximum 1<br>hr Rolling<br>Mean | Maximum 24<br>hr Rolling<br>Mean | Number of<br>valid Hours | % valid data    |
|-----------------|----------------------------|--------------------------|--------------------|-----------------------------------|---------------------------------|----------------------------------|--------------------------|-----------------|
| Month           | SO <sub>2</sub>            | SO <sub>2</sub>          | SO <sub>2</sub>    | SO <sub>2</sub>                   | SO <sub>2</sub>                 | SO <sub>2</sub>                  | SO <sub>2</sub>          | SO <sub>2</sub> |
| WOLLU           | No.                        | No.                      | (ppb)              | (ppb)                             | (ppb)                           | (ppb)                            | No.                      | %               |
| July            | 0                          | 0                        | 0.3                | 4.6                               | 3.6                             | 1.2                              | 742                      | 99.7            |
| August          | 0                          | 0                        | 0.4                | 34.3                              | 22.8                            | 1.7                              | 743                      | 99.9            |
| September       | 1                          | 1                        | 0.3                | 67.8                              | 41.5                            | 4.6                              | 713                      | 99.0            |

## Table A12: 2020 Q3 Courtice Meterological Station Windspeed Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr | Quarterly Mean | % valid hours |
|----------------|-------------------|--------------|----------------|---------------|
| Month          | Wind Speed        | Wind Speed   | Wind Speed     | Wind Speed    |
|                | (km/hr)           | (km/hr)      | (km/hr)        | (%)           |
| July           | 24.1              | 0.5          | 8.6            | 100.0         |
| August         | 37.8              | 0.4          | 9.7            | 99.6          |
| September      | 38.3              | 1.3          | 11.2           | 100.0         |

## Table A13: 2020 Q3 Rundle Meterological Station Windspeed Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr | Quarterly Mean | % valid hours |
|----------------|-------------------|--------------|----------------|---------------|
| Month          | Wind Speed        | Wind Speed   | Wind Speed     | Wind Speed    |
|                | (km/hr)           | (km/hr)      | (km/hr)        | (%)           |
| July           | 27.5              | 0.0          | 8.1            | 100.0         |
| August         | 26.1              | 0.1          | 7.5            | 99.6          |
| September      | 31.5              | 0.1          | 8.1            | 100.0         |

# Table A14: 2020 Q3 Courtice Meterological Station Wind Direction Data Summary

| MET Statistics | % valid hours  |
|----------------|----------------|
| Month          | Wind Direction |
| Month          | (%)            |
| July           | 100.0          |
| August         | 99.6           |
| September      | 100.0          |

# Table A15: 2020 Q3 Rundle Meterological Station Wind Direction Data Summary

| MET Statistics | % valid hours  |
|----------------|----------------|
| Month          | Wind Direction |
| MONTH          | (%)            |
| July           | 91.8           |
| August         | 88.6           |
| September      | 96.4           |

## Table A16: 2020 Q3 Courtice Meterological Station Temperature Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr | Quarterly Mean | % valid hours |
|----------------|-------------------|--------------|----------------|---------------|
| Month          | Temperature       | Temperature  | Temperature    | Temperature   |
|                | (°C)              | (°C)         | (°C)           | (%)           |
| July           | 33.2              | 16.0         | 22.8           | 99.7          |
| August         | 28.9              | 11.2         | 21.0           | 100.0         |
| September      | 25.5              | 3.3          | 16.3           | 100.0         |

## Table A17: 2020 Q3 Rundle Meterological Station Temperature Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr | Quarterly Mean | % valid hours |
|----------------|-------------------|--------------|----------------|---------------|
| Month          | Temperature       | Temperature  | Temperature    | Temperature   |
|                | (°C)              | (°C)         | (°C)           | (%)           |
| July           | 34.2              | 14.9         | 23.2           | 100.0         |
| August         | 29.2              | 9.0          | 20.7           | 99.6          |
| September      | 25.6              | 0.6          | 15.9           | 100.0         |

## Table A18: 2020 Q3 Courtice Meterological Station Relative Humidity Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr      | Monthly Mean      | % valid hours     |
|----------------|-------------------|-------------------|-------------------|-------------------|
| Month          | Relative Humidity | Relative Humidity | Relative Humidity | Relative Humidity |
|                | (%)               | (%)               | (%)               | (%)               |
| July           | 98.1              | 33.6              | 73.9              | 99.7              |
| August         | 97.8              | 36.0              | 73.0              | 100.0             |
| September      | 97.3              | 31.5              | 71.9              | 100.0             |

# Table A19: 2020 Q3 Rundle Meterological Station Relative Humidity Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr      | Monthly Mean      | % valid hours     |
|----------------|-------------------|-------------------|-------------------|-------------------|
| Month          | Relative Humidity | Relative Humidity | Relative Humidity | Relative Humidity |
|                | (%)               | (%)               | (%)               | (%)               |
| July           | 96.1              | 32.9              | 70.7              | 100.0             |
| August         | 98.8              | 34.9              | 72.7              | 99.6              |
| September      | 100.0             | 32.5              | 73.2              | 100.0             |

## Table A20: 2020 Q3 Courtice Meterological Station Precipitation Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr  | Monthly Mean  | Total         | % valid hours |
|----------------|-------------------|---------------|---------------|---------------|---------------|
| Month          | Precipitation     | Precipitation | Precipitation | Precipitation | Precipitation |
| Month          | (mm)              | (mm)          | (mm)          | (mm)          | (mm)          |
| July           | 5.9               | 0.0           | 0.0           | 33.9          | 99.7          |
| August         | 16.1              | 0.0           | 0.1           | 98.7          | 100.0         |
| September      | 6.1               | 0.0           | 0.1           | 39.3          | 100.0         |

# Table A21: 2020 Q3 Rundle Meterological Station Precipitation Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr  | Monthly Mean  | Total         | % valid hours |
|----------------|-------------------|---------------|---------------|---------------|---------------|
| Month          | Precipitation     | Precipitation | Precipitation | Precipitation | Precipitation |
|                | (mm)              | (mm)          | (mm)          | (mm)          | (mm)          |
| July           | 5.7               | 0.0           | 0.0           | 31.9          | 100.0         |
| August         | 9.4               | 0.0           | 0.1           | 83.8          | 99.7          |
| September      | 6.1               | 0.0           | 0.1           | 45.9          | 100.0         |

## Table A22: 2020 Q3 Courtice Meterological Station Pressure Data Summary

| MET Statistics | Maximum 1 hr Mean | Minimum 1 hr | Quarterly Mean | % valid hours |
|----------------|-------------------|--------------|----------------|---------------|
| Month          | Pressure          | Pressure     | Pressure       | Pressure      |
| Month          | (mmHg)            | (mmHg)       | (mmHg)         | (%)           |
| July           | 29.9              | 29.3         | 29.6           | 99.7          |
| August         | 29.9              | 29.1         | 29.6           | 100.0         |
| September      | 30.3              | 29.2         | 29.8           | 100.0         |





#### Table B1: Summary of Sample Flow Rate and Sample Duration for Dioxins & Furans

|                    |            | Courtice        |                   |            | Rundle          |                   |
|--------------------|------------|-----------------|-------------------|------------|-----------------|-------------------|
| Sample Date        | Filter ID  | Sample Duration | Sample Volume     | Filter ID  | Sample Duration | Sample Volume     |
|                    | No.        | (min)           | (m <sup>3</sup> ) | No.        | (min)           | (m <sup>3</sup> ) |
| July 2, 2020       | L2471865-2 | 1441            | 318               | L2471865-1 | 1441            | 296               |
| July 26, 2020      | Inv        | /alid Sample    |                   | In         | valid Sample    |                   |
| August 19, 2020    | Inv        | /alid Sample    |                   | L2485239-3 | 1440            | 306               |
| September 12, 2020 | L2496545-3 | 1440            | 286               | L2496545-2 | 1440            | 267               |

#### Table B2: 2020 Courtice Station Q3 Monitoring Results for Dioxins & Furans

| Contaminant             | Units                 | MECP<br>Criteria        | HHRA<br>Health<br>Based<br>Criteria | 2-Jul 20 | 26-Jul 20 | 19-Aug 20 | 12-Sep 20 | No. ><br>Criteria | Arithmetic<br>Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number of<br>Valid<br>Samples | % Valid<br>data |
|-------------------------|-----------------------|-------------------------|-------------------------------------|----------|-----------|-----------|-----------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|-----------------|
| 2,3,7,8-TCDD            | pg/m³                 | -                       | -                                   | 7.23E-04 |           |           | 9.27E-04  | -                 | -                  | 7.23E-04                    | 9.27E-04                    | 7.23E-04                      | -                                  | 9.27E-04                              | 2                             | 50              |
| 1,2,3,7,8-PeCDD         | pg/m <sup>3</sup>     | -                       | -                                   | 1.67E-03 |           |           | 6.82E-04  | -                 | -                  | 6.82E-04                    | 1.67E-03                    | 1.67E-03                      | -                                  | 6.82E-04                              | 2                             | 50              |
| 1,2,3,4,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | 4.72E-05 |           |           | 1.15E-04  | -                 | -                  | 4.72E-05                    | 1.15E-04                    | 4.72E-05                      | -                                  | 1.15E-04                              | 2                             | 50              |
| 1,2,3,6,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | 2.08E-04 |           |           | 1.01E-04  | -                 | -                  | 1.01E-04                    | 2.08E-04                    | 2.08E-04                      | -                                  | 1.01E-04                              | 2                             | 50              |
| 1,2,3,7,8,9-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | 2.01E-04 |           |           | 3.71E-04  | -                 | -                  | 2.01E-04                    | 3.71E-04                    | 2.01E-04                      | -                                  | 3.71E-04                              | 2                             | 50              |
| 1,2,3,4,6,7,8-HpCDD     | pg/m <sup>3</sup>     | -                       | -                                   | 2.35E-04 |           |           | 1.40E-04  | -                 | -                  | 1.40E-04                    | 2.35E-04                    | 2.35E-04                      | -                                  | 1.40E-04                              | 2                             | 50              |
| OCDD                    | pg/m <sup>3</sup>     | -                       | -                                   | 3.21E-05 |           |           | 2.15E-05  | -                 | -                  | 2.15E-05                    | 3.21E-05                    | 3.21E-05                      | -                                  | 2.15E-05                              | 2                             | 50              |
| 2,3,7,8-TCDF            | pg/m <sup>3</sup>     | -                       | -                                   | 3.93E-05 | ٥         | ٩         | 1.12E-04  | -                 | -                  | 3.93E-05                    | 1.12E-04                    | 3.93E-05                      | -                                  | 1.12E-04                              | 2                             | 50              |
| 1,2,3,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | 1.98E-05 | d<br>L    | d<br>L    | 3.04E-05  | -                 | -                  | 1.98E-05                    | 3.04E-05                    | 1.98E-05                      | -                                  | 3.04E-05                              | 2                             | 50              |
| 2,3,4,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | 1.75E-04 | d Sa      | d Sa      | 5.24E-04  | -                 | -                  | 1.75E-04                    | 5.24E-04                    | 1.75E-04                      | -                                  | 5.24E-04                              | 2                             | 50              |
| 1,2,3,4,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 1.32E-04 | valic     | valic     | 1.22E-04  | -                 | -                  | 1.22E-04                    | 1.32E-04                    | 1.32E-04                      | -                                  | 1.22E-04                              | 2                             | 50              |
| 1,2,3,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 4.25E-05 | Ē         | Ē         | 8.39E-05  | -                 | -                  | 4.25E-05                    | 8.39E-05                    | 4.25E-05                      | -                                  | 8.39E-05                              | 2                             | 50              |
| 2,3,4,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 2.11E-04 |           |           | 3.71E-04  | -                 | -                  | 2.11E-04                    | 3.71E-04                    | 2.11E-04                      | -                                  | 3.71E-04                              | 2                             | 50              |
| 1,2,3,7,8,9-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 1.32E-04 |           |           | 1.75E-04  | -                 | -                  | 1.32E-04                    | 1.75E-04                    | 1.32E-04                      | -                                  | 1.75E-04                              | 2                             | 50              |
| 1,2,3,4,6,7,8-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | 4.69E-05 |           |           | 8.57E-05  | -                 | -                  | 4.69E-05                    | 8.57E-05                    | 4.69E-05                      | -                                  | 8.57E-05                              | 2                             | 50              |
| 1,2,3,4,7,8,9-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | 8.33E-06 |           |           | 1.24E-05  | -                 | -                  | 8.33E-06                    | 1.24E-05                    | 8.33E-06                      | -                                  | 1.24E-05                              | 2                             | 50              |
| OCDF                    | pg/m <sup>3</sup>     | -                       | -                                   | 2.75E-06 |           |           | 3.46E-06  | -                 | -                  | 2.75E-06                    | 3.46E-06                    | 2.75E-06                      | -                                  | 3.46E-06                              | 2                             | 50              |
| Total Toxic Equivalency | pg TEQ/m <sup>3</sup> | 0.1<br>1 <sup>[1]</sup> | -                                   | 3.92E-03 |           |           | 3.88E-03  | 0                 | -                  | 3.88E-03                    | 3.92E-03                    | 3.92E-03                      | -                                  | 3.88E-03                              | 2                             | 50              |

NOTE: All non-detectable results were reported as 1/2 of the detection limit

[1] O. Reg. 419/05 Schedule Upper Risk Thresholds

Arithmetic mean not available as >75% data validity was not met

#### Table B3: 2020 Rundle Station Q3 Monitoring Results for Dioxins & Furans

| Contaminant             | Units                 | MECP<br>Criteria        | HHRA<br>Health<br>Based<br>Criteria | 2-Jul-20 | 26-Jul-20 | 19-Aug-20 | 12-Sep-20 | No. ><br>Criteria | Arithmetic<br>Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples | %<br>Valid<br>data |
|-------------------------|-----------------------|-------------------------|-------------------------------------|----------|-----------|-----------|-----------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|--------------------|
| 2,3,7,8-TCDD            | pg/m³                 | -                       | -                                   | 4.56E-04 |           | 1.21E-03  | 9.36E-04  | -                 | 8.67E-04           | 4.56E-04                    | 1.21E-03                    | 4.56E-04                      | 1.21E-03                           | 9.36E-04                              | 3                             | 75                 |
| 1,2,3,7,8-PeCDD         | pg/m <sup>3</sup>     | -                       | -                                   | 2.33E-03 |           | 7.52E-04  | 8.05E-04  | · ·               | 1.30E-03           | 7.52E-04                    | 2.33E-03                    | 2.33E-03                      | 7.52E-04                           | 8.05E-04                              | 3                             | 75                 |
| 1,2,3,4,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | 1.49E-04 |           | 1.05E-04  | 1.46E-04  | -                 | 1.33E-04           | 1.05E-04                    | 1.49E-04                    | 1.49E-04                      | 1.05E-04                           | 1.46E-04                              | 3                             | 75                 |
| 1,2,3,6,7,8-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | 3.21E-04 |           | 7.35E-05  | 4.16E-04  | -                 | 2.70E-04           | 7.35E-05                    | 4.16E-04                    | 3.21E-04                      | 7.35E-05                           | 4.16E-04                              | 3                             | 75                 |
| 1,2,3,7,8,9-HxCDD       | pg/m <sup>3</sup>     | -                       | -                                   | 9.46E-05 |           | 9.31E-05  | 1.72E-04  | -                 | 1.20E-04           | 9.31E-05                    | 1.72E-04                    | 9.46E-05                      | 9.31E-05                           | 1.72E-04                              | 3                             | 75                 |
| 1,2,3,4,6,7,8-HpCDD     | pg/m <sup>3</sup>     | -                       | -                                   | 3.17E-04 |           | 4.74E-05  | 1.46E-04  | -                 | 1.70E-04           | 4.74E-05                    | 3.17E-04                    | 3.17E-04                      | 4.74E-05                           | 1.46E-04                              | 3                             | 75                 |
| OCDD                    | pg/m <sup>3</sup>     | -                       | -                                   | 4.78E-05 |           | 5.88E-06  | 3.71E-05  | -                 | 3.03E-05           | 5.88E-06                    | 4.78E-05                    | 4.78E-05                      | 5.88E-06                           | 3.71E-05                              | 3                             | 75                 |
| 2,3,7,8-TCDF            | pg/m <sup>3</sup>     | -                       | -                                   | 5.07E-05 | <u>e</u>  | 9.48E-05  | 1.10E-04  | •                 | 8.53E-05           | 5.07E-05                    | 1.10E-04                    | 5.07E-05                      | 9.48E-05                           | 1.10E-04                              | 3                             | 75                 |
| 1,2,3,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | 1.82E-05 | d L       | 2.60E-05  | 1.09E-04  | -                 | 5.11E-05           | 1.82E-05                    | 1.09E-04                    | 1.82E-05                      | 2.60E-05                           | 1.09E-04                              | 3                             | 75                 |
| 2,3,4,7,8-PeCDF         | pg/m <sup>3</sup>     | -                       | -                                   | 2.43E-04 | d Sa      | 2.60E-04  | 3.26E-04  | •                 | 2.76E-04           | 2.43E-04                    | 3.26E-04                    | 2.43E-04                      | 2.60E-04                           | 3.26E-04                              | 3                             | 75                 |
| 1,2,3,4,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 1.42E-04 | vali      | 6.21E-05  | 1.33E-04  | •                 | 1.12E-04           | 6.21E-05                    | 1.42E-04                    | 1.42E-04                      | 6.21E-05                           | 1.33E-04                              | 3                             | 75                 |
| 1,2,3,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 5.24E-05 | <u> </u>  | 4.58E-05  | 9.74E-05  | •                 | 6.52E-05           | 4.58E-05                    | 9.74E-05                    | 5.24E-05                      | 4.58E-05                           | 9.74E-05                              | 3                             | 75                 |
| 2,3,4,6,7,8-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 1.72E-04 |           | 6.54E-05  | 2.06E-04  | -                 | 1.48E-04           | 6.54E-05                    | 2.06E-04                    | 1.72E-04                      | 6.54E-05                           | 2.06E-04                              | 3                             | 75                 |
| 1,2,3,7,8,9-HxCDF       | pg/m <sup>3</sup>     | -                       | -                                   | 1.15E-04 |           | 8.33E-05  | 3.71E-04  | -                 | 1.90E-04           | 8.33E-05                    | 3.71E-04                    | 1.15E-04                      | 8.33E-05                           | 3.71E-04                              | 3                             | 75                 |
| 1,2,3,4,6,7,8-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | 1.69E-05 |           | 2.81E-05  | 1.12E-04  | -                 | 5.25E-05           | 1.69E-05                    | 1.12E-04                    | 1.69E-05                      | 2.81E-05                           | 1.12E-04                              | 3                             | 75                 |
| 1,2,3,4,7,8,9-HpCDF     | pg/m <sup>3</sup>     | -                       | -                                   | 2.20E-05 |           | 5.39E-06  | 1.22E-05  | -                 | 1.32E-05           | 5.39E-06                    | 2.20E-05                    | 2.20E-05                      | 5.39E-06                           | 1.22E-05                              | 3                             | 75                 |
| OCDF                    | pg/m <sup>3</sup>     | -                       | -                                   | 2.02E-06 |           | 4.12E-07  | 3.20E-06  | -                 | 1.88E-06           | 4.12E-07                    | 3.20E-06                    | 2.02E-06                      | 4.12E-07                           | 3.20E-06                              | 3                             | 75                 |
| Total Toxic Equivalency | pg TEQ/m <sup>3</sup> | 0.1<br>1 <sup>[1]</sup> | -                                   | 4.55E-03 |           | 2.96E-03  | 4.14E-03  | 0                 | 3.88E-03           | 2.96E-03                    | 4.55E-03                    | 4.55E-03                      | 2.96E-03                           | 4.14E-03                              | 3                             | 75                 |

NOTE: All non-detectable results were reported as 1/2 of the detection limit

[1] O. Reg. 419/05 Schedule Upper Risk Thresholds

 Table B4: Summary of Sample Flow Rate and Sample Duration for PAHs

|                    |            | Courtice           |                   |            | Rundle             |               |
|--------------------|------------|--------------------|-------------------|------------|--------------------|---------------|
| Sample Date        | Filter ID  | Sample<br>Duration | Sample Volume     | Filter ID  | Sample<br>Duration | Sample Volume |
|                    | No.        | (min)              | (m <sup>3</sup> ) | No.        | (min)              | (m³)          |
| July 2, 2020       | L2471865-2 | 1441               | 318               | L2471865-1 | 1441               | 296           |
| July 14, 2020      | L2473009-3 | 1440               | 303               | L2473009-2 | 1441               | 298           |
| July 26, 2020      |            | Invalid Sample     |                   |            | Invalid Sample     |               |
| August 7, 2020     | L2483555-2 | 1440               | 316               | L2483555-3 | 1441               | 306           |
| August 19, 2020    |            | Invalid Sample     |                   | L2485239-3 | 1440               | 306           |
| August 31, 2020    | L2499246-1 | 1440               | 306               | L2499246-2 | 1440               | 322           |
| September 12, 2020 | L2496545-3 | 1440               | 286               | L2496545-2 | 1440               | 267           |
| September 24, 2020 | L2503479-3 | 1440               | 302               | L2503479-2 | 1440               | 304           |

#### Table B5: 2020 Courtice Station Q3 Monitoring Results for PAHs

| Contaminant                           | Units             | MECP<br>Criteria                                              | HHRA<br>Health<br>Based<br>Criteria | 2-jul-20 | 14-Jul-20 | 26-Jul-20 | 7-Aug-20 | 19-Aug-20 | 31-Aug-20 | 12-Sep-20 | 24-Sep-20 | No. ><br>Criteria | Arithmetic<br>Mean | Minimum Q3<br>Concentration | Maximum Q3<br>Concentration | July Maximum<br>Concentration | August Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples | % Valid<br>data |
|---------------------------------------|-------------------|---------------------------------------------------------------|-------------------------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|---------------------------------|---------------------------------------|-------------------------------|-----------------|
| 1-Methylnaphthalene                   | ng/m <sup>3</sup> | 12000                                                         | -                                   | 4.03E+00 | 5.64E+00  |           | 1.01E+01 |           | 3.82E+00  | 4.51E+00  | 8.11E+00  | 0                 | 6.04E+00           | 3.82E+00                    | 1.01E+01                    | 5.64E+00                      | 1.01E+01                        | 8.11E+00                              | 6                             | 75              |
| 2-Methylnaphthalene                   | ng/m <sup>3</sup> | 10000                                                         | -                                   | 7.08E+00 | 1.01E+01  |           | 1.73E+01 |           | 6.76E+00  | 6.57E+00  | 1.07E+01  | 0                 | 9.76E+00           | 6.57E+00                    | 1.73E+01                    | 1.01E+01                      | 1.73E+01                        | 1.07E+01                              | 6                             | 75              |
| Acenaphthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 6.79E+00 | 5.64E+00  |           | 1.43E+01 |           | 6.27E+00  | 3.15E+00  | 3.44E+00  | -                 | 6.60E+00           | 3.15E+00                    | 1.43E+01                    | 6.79E+00                      | 1.43E+01                        | 3.44E+00                              | 6                             | 75              |
| Acenaphthylene                        | ng/m <sup>3</sup> | 3500                                                          | -                                   | 1.24E-01 | 2.51E-01  |           | 3.48E-01 |           | 6.86E-02  | 3.81E-02  | 1.44E-01  | 0                 | 1.62E-01           | 3.81E-02                    | 3.48E-01                    | 2.51E-01                      | 3.48E-01                        | 1.44E-01                              | 6                             | 75              |
| Anthracene                            | ng/m <sup>3</sup> | 200                                                           | -                                   | 3.68E-01 | 3.16E-01  |           | 5.13E-01 |           | 2.83E-01  | 1.50E-01  | 2.08E-01  | 0                 | 3.06E-01           | 1.50E-01                    | 5.13E-01                    | 3.68E-01                      | 5.13E-01                        | 2.08E-01                              | 6                             | 75              |
| Benzo(a)Anthracene                    | ng/m <sup>3</sup> | -                                                             | -                                   | 1.62E-02 | 1.79E-02  |           | 3.61E-02 |           | 8.69E-03  | 7.27E-03  | 3.68E-02  | -                 | 2.05E-02           | 7.27E-03                    | 3.68E-02                    | 1.79E-02                      | 3.61E-02                        | 3.68E-02                              | 6                             | 75              |
| Benzo(a)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 6.64E-02 | 4.26E-02  |           | 7.31E-02 |           | 2.91E-02  | 2.73E-02  | 5.76E-02  | -                 | 4.93E-02           | 2.73E-02                    | 7.31E-02                    | 6.64E-02                      | 7.31E-02                        | 5.76E-02                              | 6                             | 75              |
| Benzo(a)Pyrene<br>(Historically High) | ng/m <sup>3</sup> | 0.05 <sup>[1]</sup><br>5 <sup>[2]</sup><br>1.1 <sup>[3]</sup> | 1                                   | 3.14E-02 | 1.61E-02  |           | 2.08E-02 |           | 7.42E-03  | 6.08E-03  | 5.50E-02  | 1                 | 2.28E-02           | 6.08E-03                    | 5.50E-02                    | 3.14E-02                      | 2.08E-02                        | 5.50E-02                              | 6                             | 75              |
| Benzo(b)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 3.87E-02 | 2.63E-02  |           | 3.80E-02 |           | 1.20E-02  | 1.81E-02  | 8.91E-02  | -                 | 3.70E-02           | 1.20E-02                    | 8.91E-02                    | 3.87E-02                      | 3.80E-02                        | 8.91E-02                              | 6                             | 75              |
| Benzo(b)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 3.74E-02 | 2.40E-02  |           | 4.15E-02 |           | 1.58E-02  | 1.60E-02  | 7.12E-02  | -                 | 3.43E-02           | 1.58E-02                    | 7.12E-02                    | 3.74E-02                      | 4.15E-02                        | 7.12E-02                              | 6                             | 75              |
| Benzo(e)Pyrene                        | ng/m <sup>3</sup> | -                                                             | -                                   | 3.33E-02 | 1.97E-02  | ble       | 3.35E-02 | ble       | 9.12E-03  | 2.20E-02  | 5.56E-02  | -                 | 2.89E-02           | 9.12E-03                    | 5.56E-02                    | 3.33E-02                      | 3.35E-02                        | 5.56E-02                              | 6                             | 75              |
| Benzo(g,h,i)Perylene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 2.73E-02 | 2.49E-02  | Sam       | 2.00E-02 | Sam       | 1.17E-02  | 1.31E-02  | 5.30E-02  | -                 | 2.50E-02           | 1.17E-02                    | 5.30E-02                    | 2.73E-02                      | 2.00E-02                        | 5.30E-02                              | 6                             | 75              |
| Benzo(k)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 4.34E-02 | 3.11E-02  | bile      | 5.57E-02 | bile      | 1.05E-02  | 1.59E-02  | 7.48E-02  | -                 | 3.86E-02           | 1.05E-02                    | 7.48E-02                    | 4.34E-02                      | 5.57E-02                        | 7.48E-02                              | 6                             | 75              |
| Biphenyl                              | ng/m <sup>3</sup> | -                                                             | -                                   | 2.25E+00 | 2.33E+00  | linvä     | 4.34E+00 | linvä     | 1.74E+00  | 2.36E+00  | 3.34E+00  | -                 | 2.73E+00           | 1.74E+00                    | 4.34E+00                    | 2.33E+00                      | 4.34E+00                        | 3.34E+00                              | 6                             | 75              |
| Chrysene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 9.75E-02 | 6.63E-02  |           | 9.81E-02 |           | 4.05E-02  | 4.83E-02  | 1.51E-01  | -                 | 8.36E-02           | 4.05E-02                    | 1.51E-01                    | 9.75E-02                      | 9.81E-02                        | 1.51E-01                              | 6                             | 75              |
| Dibenzo(a,h)Anthracene                | ng/m <sup>3</sup> | -                                                             | -                                   | 3.14E-04 | 1.88E-03  |           | 2.72E-03 |           | 1.63E-03  | 1.08E-03  | 8.25E-03  | -                 | 2.65E-03           | 3.14E-04                    | 8.25E-03                    | 1.88E-03                      | 2.72E-03                        | 8.25E-03                              | 6                             | 75              |
| Fluoranthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 1.62E+00 | 1.02E+00  |           | 1.67E+00 |           | 1.20E+00  | 7.73E-01  | 3.87E-01  | -                 | 1.11E+00           | 3.87E-01                    | 1.67E+00                    | 1.62E+00                      | 1.67E+00                        | 7.73E-01                              | 6                             | 75              |
| Fluorene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 4.34E+00 | 3.40E+00  | _         | 7.12E+00 |           | 3.73E+00  | 2.41E+00  | 2.19E+00  | -                 | 3.86E+00           | 2.19E+00                    | 7.12E+00                    | 4.34E+00                      | 7.12E+00                        | 2.41E+00                              | 6                             | 75              |
| Indeno(1,2,3-cd)Pyrene                | ng/m <sup>3</sup> | -                                                             | -                                   | 3.00E-02 | 1.76E-02  | _         | 2.85E-02 |           | 1.04E-02  | 1.43E-02  | 4.70E-02  | -                 | 2.46E-02           | 1.04E-02                    | 4.70E-02                    | 3.00E-02                      | 2.85E-02                        | 4.70E-02                              | 6                             | 75              |
| Naphthalene                           | ng/m <sup>3</sup> | 22500                                                         | 22500                               | 1.31E+01 | 2.69E+01  |           | 5.54E+01 |           | 1.77E+01  | 1.89E+01  | 5.46E+01  | 0                 | 3.11E+01           | 1.31E+01                    | 5.54E+01                    | 2.69E+01                      | 5.54E+01                        | 5.46E+01                              | 6                             | 75              |
| o-Terphenyl                           | ng/m <sup>3</sup> | -                                                             | -                                   | 1.02E-02 | 1.06E-02  |           | 1.27E-02 |           | 1.05E-02  | 1.32E-02  | 3.44E-02  | -                 | 1.53E-02           | 1.02E-02                    | 3.44E-02                    | 1.06E-02                      | 1.27E-02                        | 3.44E-02                              | 6                             | 75              |
| Perylene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 3.14E-04 | 2.05E-03  |           | 1.90E-03 |           | 3.27E-04  | 1.19E-03  | 5.23E-03  | -                 | 1.83E-03           | 3.14E-04                    | 5.23E-03                    | 2.05E-03                      | 1.90E-03                        | 5.23E-03                              | 6                             | 75              |
| Phenanthrene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 7.39E+00 | 5.35E+00  |           | 1.10E+01 |           | 6.01E+00  | 3.88E+00  | 3.02E+00  | -                 | 6.11E+00           | 3.02E+00                    | 1.10E+01                    | 7.39E+00                      | 1.10E+01                        | 3.88E+00                              | 6                             | 75              |
| Pyrene                                | ng/m <sup>3</sup> | -                                                             | -                                   | 8.52E-01 | 5.28E-01  |           | 8.07E-01 |           | 5.46E-01  | 3.64E-01  | 5.23E-01  | -                 | 6.03E-01           | 3.64E-01                    | 8.52E-01                    | 8.52E-01                      | 8.07E-01                        | 5.23E-01                              | 6                             | 75              |
| Tetralin                              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.88E+00 | 2.76E+00  |           | 3.20E+00 |           | 1.38E+00  | 2.00E+00  | 4.17E+00  | -                 | 2.56E+00           | 1.38E+00                    | 4.17E+00                    | 2.76E+00                      | 3.20E+00                        | 4.17E+00                              | 6                             | 75              |
| Total PAH <sup>[4]</sup>              | ng/m <sup>3</sup> | -                                                             | -                                   | 5.03E+01 | 6.45E+01  |           | 1.27E+02 |           | 4.97E+01  | 4.53E+01  | 9.17E+01  | -                 | 7.13E+01           | 4.53E+01                    | 1.27E+02                    | 6.45E+01                      | 1.27E+02                        | 9.17E+01                              | 6                             | 75              |

NOTE: All non-detectable results were reported as 1/2 of the detection limit

[1] AAQC

[2] O. Reg. 419/05 Schedule Upper Risk Thresholds

[3] O. Reg. 419/05 24 Hour Guideline

[4] Total PAH sums all PAH contaminants

#### Table B6: 2020 Rundle Station Q3 Monitoring Results for PAHs

| Contaminant                           | Units             | MECP<br>Criteria                                              | HHRA<br>Health<br>Based<br>Criteria | 2-Jul-20 | 14-Jul-20 | 26-Jul-20 | 7-Aug-20 | 19-Aug-20 | 31-Aug-20 | 12-Sep-20 | 24-Sep-20 | No. ><br>Criteria | Arithmetic<br>Mean | Minimum Q3<br>Concentration | Maximum Q3<br>Concentration | July Maximum<br>Concentration | August Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number of<br>Valid<br>Samples | % Valid<br>data |
|---------------------------------------|-------------------|---------------------------------------------------------------|-------------------------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|---------------------------------|---------------------------------------|-------------------------------|-----------------|
| 1-Methylnaphthalene                   | ng/m <sup>3</sup> | 12000                                                         | -                                   | 8.18E+00 | 7.38E+00  |           | 1.59E+01 | 1.90E+00  | 6.49E+00  | 5.73E+00  | 1.48E+01  | 0                 | 8.62E+00           | 1.90E+00                    | 1.59E+01                    | 8.18E+00                      | 1.59E+01                        | 1.48E+01                              | 7                             | 88              |
| 2-Methylnaphthalene                   | ng/m <sup>3</sup> | 10000                                                         | -                                   | 1.54E+01 | 1.31E+01  |           | 3.10E+01 | 3.01E+00  | 1.31E+01  | 9.74E+00  | 2.06E+01  | 0                 | 1.51E+01           | 3.01E+00                    | 3.10E+01                    | 1.54E+01                      | 3.10E+01                        | 2.06E+01                              | 7                             | 88              |
| Acenaphthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 1.37E+01 | 7.55E+00  |           | 2.69E+01 | 9.93E-01  | 1.15E+01  | 7.12E+00  | 8.91E+00  | -                 | 1.10E+01           | 9.93E-01                    | 2.69E+01                    | 1.37E+01                      | 2.69E+01                        | 8.91E+00                              | 7                             | 88              |
| Acenaphthylene                        | ng/m <sup>3</sup> | 3500                                                          | -                                   | 2.56E-01 | 1.64E-01  |           | 2.92E-01 | 6.47E-02  | 8.39E-02  | 6.67E-02  | 1.16E-01  | 0                 | 1.49E-01           | 6.47E-02                    | 2.92E-01                    | 2.56E-01                      | 2.92E-01                        | 1.16E-01                              | 7                             | 88              |
| Anthracene                            | ng/m <sup>3</sup> | 200                                                           | -                                   | 1.33E+00 | 7.32E-01  |           | 2.12E+00 | 8.40E-02  | 9.66E-01  | 3.82E-01  | 4.01E-01  | 0                 | 8.60E-01           | 8.40E-02                    | 2.12E+00                    | 1.33E+00                      | 2.12E+00                        | 4.01E-01                              | 7                             | 88              |
| Benzo(a)Anthracene                    | ng/m <sup>3</sup> | -                                                             | -                                   | 2.59E-02 | 1.27E-02  |           | 1.91E-02 | 7.58E-03  | 1.59E-02  | 1.24E-02  | 2.50E-02  | -                 | 1.69E-02           | 7.58E-03                    | 2.59E-02                    | 2.59E-02                      | 1.91E-02                        | 2.50E-02                              | 7                             | 88              |
| Benzo(a)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 2.03E-01 | 6.48E-02  |           | 1.43E-01 | 2.56E-02  | 7.67E-02  | 4.27E-02  | 5.00E-02  | -                 | 8.66E-02           | 2.56E-02                    | 2.03E-01                    | 2.03E-01                      | 1.43E-01                        | 5.00E-02                              | 7                             | 88              |
| Benzo(a)Pyrene<br>(Historically High) | ng/m <sup>3</sup> | 0.05 <sup>[1]</sup><br>5 <sup>[2]</sup><br>1.1 <sup>[3]</sup> | 1                                   | 2.19E-02 | 1.16E-02  |           | 1.28E-02 | 9.22E-03  | 1.07E-02  | 7.00E-03  | 6.12E-02  | 1                 | 1.92E-02           | 7.00E-03                    | 6.12E-02                    | 2.19E-02                      | 1.28E-02                        | 6.12E-02                              | 7                             | 88              |
| Benzo(b)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 3.09E-02 | 1.48E-02  |           | 3.06E-02 | 9.67E-02  | 2.59E-02  | 2.09E-02  | 6.81E-02  | -                 | 4.11E-02           | 1.48E-02                    | 9.67E-02                    | 3.09E-02                      | 9.67E-02                        | 6.81E-02                              | 7                             | 88              |
| Benzo(b)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 1.25E-01 | 3.46E-02  |           | 7.09E-02 | 1.39E-02  | 3.32E-02  | 2.38E-02  | 7.30E-02  | -                 | 5.34E-02           | 1.39E-02                    | 1.25E-01                    | 1.25E-01                      | 7.09E-02                        | 7.30E-02                              | 7                             | 88              |
| Benzo(e)Pyrene                        | ng/m <sup>3</sup> | -                                                             | -                                   | 2.14E-02 | 1.06E-02  | ble       | 2.32E-02 | 1.84E-02  | 1.34E-02  | 2.73E-02  | 3.59E-02  | -                 | 2.14E-02           | 1.06E-02                    | 3.59E-02                    | 2.14E-02                      | 2.32E-02                        | 3.59E-02                              | 7                             | 88              |
| Benzo(g,h,i)Perylene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 2.01E-02 | 1.19E-02  | San       | 1.99E-02 | 7.61E-02  | 1.42E-02  | 1.37E-02  | 4.21E-02  | -                 | 2.83E-02           | 1.19E-02                    | 7.61E-02                    | 2.01E-02                      | 7.61E-02                        | 4.21E-02                              | 7                             | 88              |
| Benzo(k)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 3.85E-02 | 1.09E-02  | bile      | 2.31E-02 | 5.69E-02  | 2.07E-02  | 2.76E-02  | 4.67E-02  | -                 | 3.21E-02           | 1.09E-02                    | 5.69E-02                    | 3.85E-02                      | 5.69E-02                        | 4.67E-02                              | 7                             | 88              |
| Biphenyl                              | ng/m <sup>3</sup> | -                                                             | -                                   | 4.09E+00 | 2.91E+00  | 2<br>N    | 7.45E+00 | 8.73E-02  | 3.11E+00  | 2.54E+00  | 4.54E+00  | -                 | 3.53E+00           | 8.73E-02                    | 7.45E+00                    | 4.09E+00                      | 7.45E+00                        | 4.54E+00                              | 7                             | 88              |
| Chrysene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 2.20E-01 | 8.46E-02  |           | 1.45E-01 | 4.31E-02  | 8.70E-02  | 5.88E-02  | 1.11E-01  | -                 | 1.07E-01           | 4.31E-02                    | 2.20E-01                    | 2.20E-01                      | 1.45E-01                        | 1.11E-01                              | 7                             | 88              |
| Dibenzo(a,h)Anthracene                | ng/m <sup>3</sup> | -                                                             | -                                   | 3.38E-04 | 1.51E-03  |           | 2.68E-03 | 8.50E-04  | 2.48E-03  | 1.50E-03  | 6.74E-03  | -                 | 2.30E-03           | 3.38E-04                    | 6.74E-03                    | 1.51E-03                      | 2.68E-03                        | 6.74E-03                              | 7                             | 88              |
| Fluoranthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 5.84E+00 | 2.82E+00  |           | 6.18E+00 | 4.02E-01  | 3.23E+00  | 1.50E+00  | 1.04E+00  | -                 | 3.00E+00           | 4.02E-01                    | 6.18E+00                    | 5.84E+00                      | 6.18E+00                        | 1.50E+00                              | 7                             | 88              |
| Fluorene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.08E+01 | 5.70E+00  |           | 1.65E+01 | 8.63E-01  | 7.20E+00  | 4.49E+00  | 4.77E+00  | -                 | 7.19E+00           | 8.63E-01                    | 1.65E+01                    | 1.08E+01                      | 1.65E+01                        | 4.77E+00                              | 7                             | 88              |
| Indeno(1,2,3-cd)Pyrene                | ng/m <sup>3</sup> | -                                                             | -                                   | 2.04E-02 | 9.56E-03  |           | 2.45E-02 | 3.00E-02  | 1.76E-02  | 1.54E-02  | 3.21E-02  | -                 | 2.14E-02           | 9.56E-03                    | 3.21E-02                    | 2.04E-02                      | 3.00E-02                        | 3.21E-02                              | 7                             | 88              |
| Naphthalene                           | ng/m <sup>3</sup> | 22500                                                         | 22500                               | 1.35E+01 | 2.21E+01  |           | 5.98E+01 | 7.52E+00  | 1.73E+01  | 2.27E+01  | 8.39E+01  | 0                 | 3.24E+01           | 7.52E+00                    | 8.39E+01                    | 2.21E+01                      | 5.98E+01                        | 8.39E+01                              | 7                             | 88              |
| o-Terphenyl                           | ng/m <sup>3</sup> | -                                                             | -                                   | 1.09E-02 | 9.30E-03  |           | 1.78E-02 | 2.10E-02  | 8.76E-03  | 1.19E-02  | 3.98E-02  | -                 | 1.71E-02           | 8.76E-03                    | 3.98E-02                    | 1.09E-02                      | 2.10E-02                        | 3.98E-02                              | 7                             | 88              |
| Perylene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 3.38E-04 | 8.72E-04  |           | 2.61E-03 | 1.47E-03  | 1.74E-03  | 1.46E-03  | 2.34E-03  | -                 | 1.55E-03           | 3.38E-04                    | 2.61E-03                    | 8.72E-04                      | 2.61E-03                        | 2.34E-03                              | 7                             | 88              |
| Phenanthrene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 2.17E+01 | 1.11E+01  |           | 3.06E+01 | 1.83E+00  | 1.38E+01  | 7.04E+00  | 7.57E+00  | -                 | 1.34E+01           | 1.83E+00                    | 3.06E+01                    | 2.17E+01                      | 3.06E+01                        | 7.57E+00                              | 7                             | 88              |
| Pyrene                                | ng/m <sup>3</sup> | -                                                             | -                                   | 2.74E+00 | 1.34E+00  |           | 2.61E+00 | 2.14E-01  | 1.40E+00  | 6.63E-01  | 4.77E-01  | -                 | 1.35E+00           | 2.14E-01                    | 2.74E+00                    | 2.74E+00                      | 2.61E+00                        | 6.63E-01                              | 7                             | 88              |
| Tetralin                              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.63E+00 | 2.63E+00  |           | 2.85E+00 | 1.12E+00  | 1.21E+00  | 1.84E+00  | 1.29E+01  | -                 | 3.46E+00           | 1.12E+00                    | 1.29E+01                    | 2.63E+00                      | 2.85E+00                        | 1.29E+01                              | 7                             | 88              |
| Total PAH <sup>[4]</sup>              | ng/m <sup>3</sup> | -                                                             | -                                   | 9.99E+01 | 7.79E+01  |           | 2.03E+02 | 1.85E+01  | 7.97E+01  | 6.41E+01  | 1.61E+02  | -                 | 1.00E+02           | 1.85E+01                    | 2.03E+02                    | 9.99E+01                      | 2.03E+02                        | 1.61E+02                              | 7                             | 88              |

NOTE: All non-detectable results were reported as 1/2 of the detection limit

[1] AAQC

[2] O. Reg. 419/05 Schedule Upper Risk Thresholds [3] O. Reg. 419/05 24 Hour Guideline [4] Total PAH sums all PAH contaminants

|                    |           | Courtice           |                   |           | Rundle             |                   |
|--------------------|-----------|--------------------|-------------------|-----------|--------------------|-------------------|
| Sample Date        | Filter ID | Sample<br>Duration | Sample Volume     | Filter ID | Sample<br>Duration | Sample Volume     |
|                    | No.       | (min)              | (m <sup>3</sup> ) | No.       | (min)              | (m <sup>3</sup> ) |
| July 2, 2020       | 738889    | 1441               | 1549              | 738888    | 1441               | 1511              |
| July 8, 2020       | 738891    | 1440               | 1536              | 738890    | 1441               | 1483              |
| July 14, 2020      | 738893    | 1440               | 1645              | 738892    | 1441               | 1659              |
| July 20, 2020      | 738895    | 1440               | 1653              |           | Invalid Sample     |                   |
| July 26, 2020      | 738897    | 1440               | 1746              | 738896    | 1441               | 1620              |
| August 1, 2020     | 738898    | 1440               | 1697              |           | Invalid Sample     |                   |
| August 7, 2020     | 738900    | 1440               | 1700              | 738899    | 1441               | 1662              |
| August 13, 2020    | 738901    | 1440               | 1704              | 740824    | 1441               | 1615              |
| August 19, 2020    | 740826    | 1440               | 1690              | 740825    | 1440               | 1713              |
| August 25, 2020    | 740828    | 1440               | 1679              | 740827    | 1440               | 1654              |
| August 31, 2020    | 740830    | 1440               | 1691              | 740829    | 1440               | 1699              |
| September 6, 2020  | 740832    | 1440               | 1702              |           | Invalid Sample     |                   |
| September 12, 2020 | 740833    | 1440               | 1696              | 740834    | 1440               | 1722              |
| September 18, 2020 | 740836    | 1440               | 1738              | 740835    | 1440               | 1756              |
| September 24, 2020 | 740838    | 1440               | 1695              | 740837    | 1440               | 1662              |
| September 30, 2020 | 740840    | 1440               | 1676              | 740839    | 1441               | 1692              |

#### Table B7: Summary of Sample Flow Rate and Sample Duration for TSP

#### Table B8: 2020 Courtice Station Q3 Monitoring Results for TSP and Metals

| Contaminant        | Units             | MECP<br>Criteria | HHRA<br>Health<br>Based<br>Criteria | 2-Jul-20 | 8-Jul-20 | 14-Jul-20 | 20-Jul-20 | 26-Jul-20 | 1-Aug-20 | 7-Aug-20 | 13-Aug-20 | 19-Aug-20 | 25-Aug-20 | 31-Aug-20 | 6-Sep-20 | 12-Sep-20 | 18-Sep-20 | 24-Sep-20 | 30-Sep-20 | MECP<br>Criteria<br>(μg/m³) | No. ><br>Criteria | Geometric<br>Mean | Arithmetic<br>Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number<br>of Valid<br>Samples | %<br>Valid<br>data |
|--------------------|-------------------|------------------|-------------------------------------|----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------------------------|-------------------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|--------------------|
| Particulate (TSP)  | µg/m³             | 120              | 120                                 | 48.29    | 69.66    | 22.13     | 24.56     | 37.97     | 21.57    | 23.88    | 36.85     | 17.10     | 21.44     | 11.59     | 16.75    | 18.46     | 36.13     | 52.51     | 13.84     | 120                         | 0                 | 26.07             | 29.55              | 11.59                       | 69.66                       | 69.66                         | 36.85                              | 52.51                                 | 16                            | 100                |
| Total Mercury (Hg) | µg/m³             | 2                | 2                                   | 1.03E-05 | 1.24E-05 | 1.34E-05  | 1.09E-05  | 1.32E-05  | 1.24E-05 | 4.00E-05 | 1.12E-05  | 2.96E-06  | 1.37E-05  | 2.96E-06  | 2.94E-06 | 8.84E-06  | 8.06E-06  | 1.12E-05  | 1.31E-05  | 2                           | 0                 | 9.58E-06          | 1.17E-05           | 2.94E-06                    | 4.00E-05                    | 1.34E-05                      | 4.00E-05                           | 1.31E-05                              | 16                            | 100                |
| Aluminum (Al)      | µg/m³             | 4.8              | -                                   | 2.81E-01 | 3.55E-01 | 1.23E-01  | 1.26E-01  | 1.44E-01  | 1.28E-01 | 1.16E-01 | 3.62E-01  | 1.17E-01  | 1.09E-01  | 1.01E-01  | 9.05E-02 | 1.33E-01  | 5.00E-01  | 3.32E-01  | 7.16E-02  | 4.8                         | 0                 | 1.62E-01          | 1.93E-01           | 7.16E-02                    | 5.00E-01                    | 3.55E-01                      | 3.62E-01                           | 5.00E-01                              | 16                            | 100                |
| Antimony (Sb)      | µg/m³             | 25               | 25                                  | 5.42E-04 | 1.35E-03 | 9.18E-04  | 4.78E-04  | 8.59E-04  | 7.13E-04 | 7.82E-04 | 8.74E-04  | 9.29E-04  | 7.03E-04  | 5.62E-04  | 5.82E-04 | 5.60E-04  | 4.89E-04  | 1.44E-03  | 6.80E-04  | 25                          | 0                 | 7.38E-04          | 7.79E-04           | 4.78E-04                    | 1.44E-03                    | 1.35E-03                      | 9.29E-04                           | 1.44E-03                              | 16                            | 100                |
| Arsenic (As)       | µg/m³             | 0.3              | 0.3                                 | 9.68E-04 | 9.77E-04 | 9.12E-04  | 9.07E-04  | 8.59E-04  | 8.84E-04 | 8.82E-04 | 8.80E-04  | 8.88E-04  | 8.93E-04  | 8.87E-04  | 8.81E-04 | 8.84E-04  | 8.63E-04  | 2.36E-03  | 8.95E-04  | 0.3                         | 0                 | 9.53E-04          | 9.89E-04           | 8.59E-04                    | 2.36E-03                    | 9.77E-04                      | 8.93E-04                           | 2.36E-03                              | 16                            | 100                |
| Barium (Ba)        | µg/m³             | 10               | 10                                  | 1.19E-02 | 1.55E-02 | 1.10E-02  | 6.11E-03  | 6.64E-03  | 3.95E-03 | 8.35E-03 | 1.29E-02  | 9.53E-03  | 6.67E-03  | 3.73E-03  | 3.47E-03 | 3.77E-03  | 8.23E-03  | 1.15E-02  | 7.22E-03  | 10                          | 0                 | 7.36E-03          | 8.15E-03           | 3.47E-03                    | 1.55E-02                    | 1.55E-02                      | 1.29E-02                           | 1.15E-02                              | 16                            | 100                |
| Beryllium (Be)     | µg/m³             | 0.01             | 0.01                                | 3.23E-05 | 3.26E-05 | 3.04E-05  | 3.02E-05  | 2.86E-05  | 2.95E-05 | 2.94E-05 | 2.93E-05  | 2.96E-05  | 2.98E-05  | 2.96E-05  | 2.94E-05 | 2.95E-05  | 2.88E-05  | 2.95E-05  | 2.98E-05  | 0.01                        | 0                 | 2.99E-05          | 2.99E-05           | 2.86E-05                    | 3.26E-05                    | 3.26E-05                      | 2.98E-05                           | 2.98E-05                              | 16                            | 100                |
| Bismuth (Bi)       | µg/m³             | -                | -                                   | 5.81E-04 | 5.86E-04 | 5.47E-04  | 5.44E-04  | 5.15E-04  | 5.30E-04 | 5.29E-04 | 5.28E-04  | 5.33E-04  | 5.36E-04  | 5.32E-04  | 5.29E-04 | 5.31E-04  | 5.18E-04  | 5.31E-04  | 5.37E-04  | -                           | -                 | 5.38E-04          | 5.38E-04           | 5.15E-04                    | 5.86E-04                    | 5.86E-04                      | 5.36E-04                           | 5.37E-04                              | 16                            | 100                |
| Boron (B)          | µg/m³             | 120              | -                                   | 1.29E-02 | 1.30E-02 | 1.22E-02  | 1.21E-02  | 1.15E-02  | 1.18E-02 | 1.18E-02 | 1.17E-02  | 1.18E-02  | 1.19E-02  | 1.18E-02  | 1.18E-02 | 1.18E-02  | 1.15E-02  | 1.18E-02  | 1.19E-02  | 120                         | 0                 | 1.19E-02          | 1.20E-02           | 1.15E-02                    | 1.30E-02                    | 1.30E-02                      | 1.19E-02                           | 1.19E-02                              | 16                            | 100                |
| Cadmium (Cd)       | µg/m³             | 0.025            | 0.025                               | 6.46E-04 | 6.51E-04 | 6.08E-04  | 6.05E-04  | 5.73E-04  | 5.89E-04 | 5.88E-04 | 5.87E-04  | 5.92E-04  | 5.96E-04  | 5.91E-04  | 5.88E-04 | 5.90E-04  | 5.75E-04  | 5.90E-04  | 5.97E-04  | 0.025                       | 0                 | 5.97E-04          | 5.98E-04           | 5.73E-04                    | 6.51E-04                    | 6.51E-04                      | 5.96E-04                           | 5.97E-04                              | 16                            | 100                |
| Chromium (Cr)      | µg/m³             | 0.5              | -                                   | 1.61E-03 | 4.43E-03 | 1.52E-03  | 1.51E-03  | 1.43E-03  | 1.47E-03 | 1.47E-03 | 1.47E-03  | 1.48E-03  | 1.49E-03  | 1.48E-03  | 1.47E-03 | 1.47E-03  | 1.44E-03  | 1.47E-03  | 1.49E-03  | 0.5                         | 0                 | 1.59E-03          | 1.67E-03           | 1.43E-03                    | 4.43E-03                    | 4.43E-03                      | 1.49E-03                           | 1.49E-03                              | 16                            | 100                |
| Cobalt (Co)        | µg/m³             | 0.1              | 0.1                                 | 6.46E-04 | 6.51E-04 | 6.08E-04  | 6.05E-04  | 5.73E-04  | 5.89E-04 | 5.88E-04 | 5.87E-04  | 5.92E-04  | 5.96E-04  | 5.91E-04  | 5.88E-04 | 5.90E-04  | 5.75E-04  | 5.90E-04  | 5.97E-04  | 0.1                         | 0                 | 5.97E-04          | 5.98E-04           | 5.73E-04                    | 6.51E-04                    | 6.51E-04                      | 5.96E-04                           | 5.97E-04                              | 16                            | 100                |
| Copper (Cu)        | µg/m³             | 50               | -                                   | 1.12E-02 | 3.37E-02 | 1.59E-02  | 8.35E-03  | 9.62E-03  | 9.61E-03 | 1.53E-02 | 1.34E-02  | 2.27E-02  | 9.89E-03  | 1.08E-02  | 9.87E-03 | 6.96E-03  | 6.79E-03  | 3.06E-02  | 1.28E-02  | 50                          | 0                 | 1.26E-02          | 1.42E-02           | 6.79E-03                    | 3.37E-02                    | 3.37E-02                      | 2.27E-02                           | 3.06E-02                              | 16                            | 100                |
| Iron (Fe)          | µg/m³             | 4                | -                                   | 5.81E-01 | 1.26E+00 | 4.46E-01  | 3.43E-01  | 3.76E-01  | 4.33E-01 | 5.24E-01 | 7.63E-01  | 3.57E-01  | 2.79E-01  | 2.93E-01  | 2.54E-01 | 3.18E-01  | 6.04E-01  | 6.84E-01  | 2.90E-01  | 4                           | 0                 | 4.41E-01          | 4.88E-01           | 2.54E-01                    | 1.26E+00                    | 1.26E+00                      | 7.63E-01                           | 6.84E-01                              | 16                            | 100                |
| Lead (Pb)          | µg/m³             | 0.5              | 0.5                                 | 1.94E-03 | 7.81E-03 | 2.80E-03  | 2.12E-03  | 2.81E-03  | 2.06E-03 | 8.82E-04 | 2.17E-03  | 8.88E-04  | 1.91E-03  | 8.87E-04  | 1.94E-03 | 2.12E-03  | 8.63E-04  | 4.25E-03  | 1.97E-03  | 2                           | 0                 | 1.95E-03          | 2.34E-03           | 8.63E-04                    | 7.81E-03                    | 7.81E-03                      | 2.17E-03                           | 4.25E-03                              | 16                            | 100                |
| Magnesium (Mg)     | µg/m³             | -                | -                                   | 3.87E-01 | 8.98E-01 | 2.25E-01  | 2.00E-01  | 2.92E-01  | 1.53E-01 | 1.82E-01 | 3.93E-01  | 1.54E-01  | 1.61E-01  | 1.48E-01  | 1.41E-01 | 1.42E-01  | 3.68E-01  | 3.83E-01  | 1.49E-01  | -                           | -                 | 2.33E-01          | 2.74E-01           | 1.41E-01                    | 8.98E-01                    | 8.98E-01                      | 3.93E-01                           | 3.83E-01                              | 16                            | 100                |
| Manganese (Mn)     | µg/m³             | 0.4              | -                                   | 1.90E-02 | 3.69E-02 | 1.23E-02  | 1.09E-02  | 1.32E-02  | 7.78E-03 | 1.12E-02 | 2.34E-02  | 8.46E-03  | 8.40E-03  | 6.39E-03  | 6.82E-03 | 6.13E-03  | 1.77E-02  | 2.07E-02  | 8.65E-03  | 0.4                         | 0                 | 1.19E-02          | 1.36E-02           | 6.13E-03                    | 3.69E-02                    | 3.69E-02                      | 2.34E-02                           | 2.07E-02                              | 16                            | 100                |
| Molybdenum (Mo)    | µg/m³             | 120              | -                                   | 3.23E-04 | 1.24E-03 | 7.29E-04  | 3.02E-04  | 2.86E-04  | 2.95E-04 | 2.94E-04 | 6.46E-04  | 7.10E-04  | 2.98E-04  | 2.96E-04  | 2.94E-04 | 2.95E-04  | 2.88E-04  | 8.26E-04  | 2.98E-04  | 120                         | 0                 | 4.06E-04          | 4.64E-04           | 2.86E-04                    | 1.24E-03                    | 1.24E-03                      | 7.10E-04                           | 8.26E-04                              | 16                            | 100                |
| Nickel (Ni)        | µg/m³             | 0.2              | -                                   | 9.68E-04 | 2.02E-03 | 9.12E-04  | 9.07E-04  | 8.59E-04  | 8.84E-04 | 8.82E-04 | 8.80E-04  | 8.88E-04  | 8.93E-04  | 8.87E-04  | 8.81E-04 | 8.84E-04  | 8.63E-04  | 8.85E-04  | 8.95E-04  | 0.2                         | 0                 | 9.38E-04          | 9.62E-04           | 8.59E-04                    | 2.02E-03                    | 2.02E-03                      | 8.93E-04                           | 8.95E-04                              | 16                            | 100                |
| Phosphorus (P)     | µg/m³             | -                | -                                   | 2.42E-01 | 2.44E-01 | 2.28E-01  | 2.27E-01  | 2.15E-01  | 2.21E-01 | 2.21E-01 | 2.20E-01  | 2.22E-01  | 2.23E-01  | 2.22E-01  | 2.20E-01 | 2.21E-01  | 2.16E-01  | 2.21E-01  | 2.24E-01  | -                           | -                 | 2.24E-01          | 2.24E-01           | 2.15E-01                    | 2.44E-01                    | 2.44E-01                      | 2.23E-01                           | 2.24E-01                              | 16                            | 100                |
| Selenium (Se)      | µg/m³             | 10               | 10                                  | 3.23E-03 | 3.26E-03 | 3.04E-03  | 3.02E-03  | 2.86E-03  | 2.95E-03 | 2.94E-03 | 2.93E-03  | 2.96E-03  | 2.98E-03  | 2.96E-03  | 2.94E-03 | 2.95E-03  | 2.88E-03  | 2.95E-03  | 2.98E-03  | 10                          | 0                 | 2.99E-03          | 2.99E-03           | 2.86E-03                    | 3.26E-03                    | 3.26E-03                      | 2.98E-03                           | 2.98E-03                              | 16                            | 100                |
| Silver (Ag)        | µg/m³             | 1                | 1                                   | 3.23E-04 | 3.26E-04 | 3.04E-04  | 3.02E-04  | 2.86E-04  | 2.95E-04 | 2.94E-04 | 2.93E-04  | 2.96E-04  | 2.98E-04  | 2.96E-04  | 2.94E-04 | 2.95E-04  | 2.88E-04  | 2.95E-04  | 2.98E-04  | 1                           | 0                 | 2.99E-04          | 2.99E-04           | 2.86E-04                    | 3.26E-04                    | 3.26E-04                      | 2.98E-04                           | 2.98E-04                              | 16                            | 100                |
| Strontium (Sr)     | µg/m³             | 120              | -                                   | 1.38E-02 | 2.08E-02 | 5.59E-03  | 4.36E-03  | 9.45E-03  | 4.60E-03 | 5.47E-03 | 9.80E-03  | 5.44E-03  | 3.81E-03  | 4.26E-03  | 4.52E-03 | 4.19E-03  | 1.23E-02  | 9.50E-03  | 2.51E-03  | 120                         | 0                 | 6.40E-03          | 7.52E-03           | 2.51E-03                    | 2.08E-02                    | 2.08E-02                      | 9.80E-03                           | 1.23E-02                              | 16                            | 100                |
| Thallium (Tl)      | µg/m³             | -                | -                                   | 2.91E-05 | 2.93E-05 | 2.74E-05  | 2.72E-05  | 2.58E-05  | 2.65E-05 | 2.65E-05 | 2.64E-05  | 2.66E-05  | 2.68E-05  | 2.66E-05  | 2.64E-05 | 2.65E-05  | 2.59E-05  | 2.65E-05  | 2.68E-05  | -                           | -                 | 2.69E-05          | 2.69E-05           | 2.58E-05                    | 2.93E-05                    | 2.93E-05                      | 2.68E-05                           | 2.68E-05                              | 16                            | 100                |
| Tin (Sn)           | µg/m³             | 10               | 10                                  | 3.23E-04 | 1.43E-03 | 8.51E-04  | 6.05E-04  | 1.03E-03  | 1.89E-03 | 8.24E-04 | 9.98E-04  | 6.51E-04  | 6.55E-04  | 2.96E-04  | 7.64E-04 | 5.90E-04  | 2.88E-04  | 1.59E-03  | 8.35E-04  | 10                          | 0                 | 7.41E-04          | 8.51E-04           | 2.88E-04                    | 1.89E-03                    | 1.43E-03                      | 1.89E-03                           | 1.59E-03                              | 16                            | 100                |
| Titanium (Ti)      | µg/m³             | 120              | -                                   | 1.42E-02 | 1.95E-02 | 7.29E-03  | 3.33E-03  | 6.87E-03  | 7.66E-03 | 6.47E-03 | 1.82E-02  | 7.10E-03  | 3.28E-03  | 3.25E-03  | 3.23E-03 | 7.08E-03  | 2.07E-02  | 1.47E-02  | 6.56E-03  | 120                         | 0                 | 7.67E-03          | 9.34E-03           | 3.23E-03                    | 2.07E-02                    | 1.95E-02                      | 1.82E-02                           | 2.07E-02                              | 16                            | 100                |
| Uranium (Ur)       | µg/m³             | 1.5              | -                                   | 3.23E-05 | 3.26E-05 | 3.04E-05  | 3.02E-05  | 2.86E-05  | 2.95E-05 | 2.94E-05 | 2.93E-05  | 2.96E-05  | 2.98E-05  | 2.96E-05  | 2.94E-05 | 2.95E-05  | 2.88E-05  | 2.95E-05  | 2.98E-05  | 1.5                         | 0                 | 2.99E-05          | 2.99E-05           | 2.86E-05                    | 3.26E-05                    | 3.26E-05                      | 2.98E-05                           | 2.98E-05                              | 16                            | 100                |
| Vanadium (V)       | µg/m <sup>3</sup> | 2                | 1                                   | 1.61E-03 | 1.63E-03 | 1.52E-03  | 1.51E-03  | 1.43E-03  | 1.47E-03 | 1.47E-03 | 1.47E-03  | 1.48E-03  | 1.49E-03  | 1.48E-03  | 1.47E-03 | 1.47E-03  | 1.44E-03  | 1.47E-03  | 1.49E-03  | 2                           | 0                 | 1.49E-03          | 1.49E-03           | 1.43E-03                    | 1.63E-03                    | 1.63E-03                      | 1.49E-03                           | 1.49E-03                              | 16                            | 100                |
| Zinc (Zn)          | µg/m³             | 120              | -                                   | 2.81E-02 | 6.36E-02 | 3.23E-02  | 4.30E-02  | 3.33E-02  | 2.81E-02 | 2.91E-02 | 3.43E-02  | 2.00E-02  | 5.87E-02  | 2.58E-02  | 3.60E-02 | 2.03E-02  | 1.44E-02  | 3.59E-02  | 3.31E-02  | 120                         | 0                 | 3.14E-02          | 3.35E-02           | 1.44E-02                    | 6.36E-02                    | 6.36E-02                      | 5.87E-02                           | 3.60E-02                              | 16                            | 100                |
| Zirconium (Zr)     | µg/m³             | 20               | -                                   | 6.46E-04 | 6.51E-04 | 6.08E-04  | 6.05E-04  | 5.73E-04  | 5.89E-04 | 5.88E-04 | 5.87E-04  | 5.92E-04  | 5.96E-04  | 5.91E-04  | 5.88E-04 | 5.90E-04  | 5.75E-04  | 5.90E-04  | 5.97E-04  | 20                          | 0                 | 5.97E-04          | 5.98E-04           | 5.73E-04                    | 6.51E-04                    | 6.51E-04                      | 5.96E-04                           | 5.97E-04                              | 16                            | 100                |

NOTE: All non-detectable results were reported as 1/2 of the detection limit

#### Table B9: 2020 Rundle Station Q3 Monitoring Results for TSP and Metals

| Contaminant       | Units | MECP<br>Criteria | HHRA<br>Health<br>Based<br>Criteria | 2-Jul-20 | 8-Jul-20 | 14-Jul-20 | 20-Jul-20 | 26-Jul-20 | 1-Aug-20 | 7-Aug-20 | 13-Aug-20 | 19-Aug-20 | 25-Aug-20 | 31-Aug-20 | 6-Sep-20 | 12-Sep-20 | 18-Sep-20 | 24-Sep-20 | 30-Sep-20 | MECP Criteria<br>(μg/m³) | No. ><br>Criteria | Geometric<br>Mean | Arithmetic<br>Mean | Q3 Minimum<br>Concentration | Q3 Maximum<br>Concentration | July Maximum<br>Concentration | August<br>Maximum<br>Concentration | September<br>Maximum<br>Concentration | Number of<br>Valid<br>Samples | f % Valid<br>data |
|-------------------|-------|------------------|-------------------------------------|----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|--------------------------|-------------------|-------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------------|---------------------------------------|-------------------------------|-------------------|
| Particulate (TSP) | µg/m³ | 120              | 120                                 | 33.62    | 41.74    | 22.36     |           | 30.12     |          | 19.98    | 33.93     | 13.72     | 33.49     | 15.54     |          | 15.45     | 16.12     | 43.86     | 18.85     | 120                      | 0                 | 24.1              | 26.1               | 13.7                        | 43.9                        | 41.7                          | 33.9                               | 43.9                                  | 13                            | 81                |
| Mercury (Hg)      | µg/m³ | 2                | 2                                   | 9.27E-06 | 1.96E-05 | 1.39E-05  |           | 1.30E-05  |          | 3.13E-05 | 7.43E-06  | 2.92E-06  | 3.02E-06  | 2.94E-06  |          | 2.90E-06  | 2.85E-06  | 7.22E-06  | 7.68E-06  | 2                        | 0                 | 6.96E-06          | 9.53E-06           | 2.85E-06                    | 3.13E-05                    | 1.96E-05                      | 3.13E-05                           | 7.68E-06                              | 13                            | 81                |
| Aluminum (Al)     | µg/m³ | 4.8              | -                                   | 2.29E-01 | 2.85E-01 | 1.57E-01  |           | 1.49E-01  |          | 1.41E-01 | 2.67E-01  | 8.17E-02  | 2.45E-01  | 1.24E-01  |          | 9.00E-02  | 1.31E-01  | 3.01E-01  | 8.22E-02  | 4.8                      | 0                 | 1.59E-01          | 1.76E-01           | 8.17E-02                    | 3.01E-01                    | 2.85E-01                      | 2.67E-01                           | 3.01E-01                              | 13                            | 81                |
| Antimony (Sb)     | µg/m³ | 25               | 25                                  | 5.10E-04 | 1.33E-03 | 7.11E-04  |           | 7.84E-04  |          | 3.79E-04 | 5.57E-04  | 2.45E-04  | 6.05E-04  | 4.24E-04  |          | 4.94E-04  | 2.51E-04  | 1.03E-03  | 6.26E-04  | 25                       | 0                 | 5.48E-04          | 6.11E-04           | 2.45E-04                    | 1.33E-03                    | 1.33E-03                      | 6.05E-04                           | 1.03E-03                              | 13                            | 81                |
| Arsenic (As)      | µg/m³ | 0.3              | 0.3                                 | 9.93E-04 | 1.01E-03 | 9.04E-04  |           | 9.26E-04  |          | 9.03E-04 | 9.29E-04  | 8.76E-04  | 9.07E-04  | 8.83E-04  |          | 8.71E-04  | 2.79E-03  | 9.03E-04  | 8.87E-04  | 0.3                      | 0                 | 9.97E-04          | 1.06E-03           | 8.71E-04                    | 2.79E-03                    | 1.01E-03                      | 9.29E-04                           | 2.79E-03                              | 13                            | 81                |
| Barium (Ba)       | µg/m³ | 10               | 10                                  | 1.09E-02 | 1.97E-02 | 9.16E-03  |           | 6.17E-03  |          | 5.17E-03 | 1.00E-02  | 3.97E-03  | 8.52E-03  | 4.18E-03  |          | 3.66E-03  | 3.25E-03  | 9.51E-03  | 7.21E-03  | 10                       | 0                 | 6.84E-03          | 7.80E-03           | 3.25E-03                    | 1.97E-02                    | 1.97E-02                      | 1.00E-02                           | 9.51E-03                              | 13                            | 81                |
| Beryllium (Be)    | µg/m³ | 0.01             | 0.01                                | 3.31E-05 | 3.37E-05 | 3.01E-05  |           | 3.09E-05  |          | 3.01E-05 | 3.10E-05  | 2.92E-05  | 3.02E-05  | 2.94E-05  |          | 2.90E-05  | 2.85E-05  | 3.01E-05  | 2.96E-05  | 0.01                     | 0                 | 3.03E-05          | 3.04E-05           | 2.85E-05                    | 3.37E-05                    | 3.37E-05                      | 3.10E-05                           | 3.01E-05                              | 13                            | 81                |
| Bismuth (Bi)      | µg/m³ | -                | -                                   | 5.96E-04 | 6.07E-04 | 5.42E-04  |           | 5.56E-04  |          | 5.42E-04 | 5.57E-04  | 5.25E-04  | 5.44E-04  | 5.30E-04  |          | 5.23E-04  | 5.13E-04  | 5.42E-04  | 5.32E-04  | · ·                      | -                 | 5.46E-04          | 5.47E-04           | 5.13E-04                    | 6.07E-04                    | 6.07E-04                      | 5.57E-04                           | 5.42E-04                              | 13                            | 81                |
| Boron (B)         | µg/m³ | 120              | -                                   | 1.32E-02 | 1.35E-02 | 1.21E-02  |           | 1.23E-02  |          | 1.20E-02 | 1.24E-02  | 1.17E-02  | 1.21E-02  | 1.18E-02  |          | 1.16E-02  | 1.14E-02  | 1.20E-02  | 1.18E-02  | 120                      | 0                 | 1.21E-02          | 1.21E-02           | 1.14E-02                    | 1.35E-02                    | 1.35E-02                      | 1.24E-02                           | 1.20E-02                              | 13                            | 81                |
| Cadmium (Cd)      | µg/m³ | 0.025            | 0.025                               | 6.62E-04 | 6.74E-04 | 6.03E-04  |           | 6.17E-04  |          | 6.02E-04 | 6.19E-04  | 5.84E-04  | 6.05E-04  | 5.89E-04  |          | 5.81E-04  | 5.69E-04  | 6.02E-04  | 5.91E-04  | 0.025                    | 0                 | 6.07E-04          | 6.07E-04           | 5.69E-04                    | 6.74E-04                    | 6.74E-04                      | 6.19E-04                           | 6.02E-04                              | 13                            | 81                |
| Chromium (Cr)     | µg/m³ | 0.5              | -                                   | 1.65E-03 | 3.98E-03 | 1.51E-03  |           | 1.54E-03  |          | 1.50E-03 | 1.55E-03  | 1.46E-03  | 1.51E-03  | 1.47E-03  |          | 1.45E-03  | 1.42E-03  | 1.50E-03  | 1.48E-03  | 0.5                      | 0                 | 1.62E-03          | 1.69E-03           | 1.42E-03                    | 3.98E-03                    | 3.98E-03                      | 1.55E-03                           | 1.50E-03                              | 13                            | 81                |
| Cobalt (Co)       | µg/m³ | 0.1              | 0.1                                 | 6.62E-04 | 6.74E-04 | 6.03E-04  |           | 6.17E-04  |          | 6.02E-04 | 6.19E-04  | 5.84E-04  | 6.05E-04  | 5.89E-04  |          | 5.81E-04  | 5.69E-04  | 6.02E-04  | 5.91E-04  | 0.1                      | 0                 | 6.07E-04          | 6.07E-04           | 5.69E-04                    | 6.74E-04                    | 6.74E-04                      | 6.19E-04                           | 6.02E-04                              | 13                            | 81                |
| Copper (Cu)       | µg/m³ | 50               | -                                   | 1.98E-02 | 5.74E-02 | 3.88E-02  |           | 4.14E-02  |          | 5.72E-02 | 4.79E-02  | 4.76E-02  | 2.99E-02  | 1.95E-02  |          | 1.48E-02  | 2.35E-02  | 4.04E-02  | 3.51E-02  | 50                       | 0                 | 3.36E-02          | 3.64E-02           | 1.48E-02                    | 5.74E-02                    | 5.74E-02                      | 5.72E-02                           | 4.04E-02                              | 13                            | 81                |
| Iron (Fe)         | µg/m³ | 4                | -                                   | 4.41E-01 | 8.83E-01 | 3.72E-01  | ple       | 3.56E-01  | d d      | 3.06E-01 | 7.06E-01  | 1.66E-01  | 4.27E-01  | 4.06E-01  | ple      | 3.03E-01  | 1.82E-01  | 4.96E-01  | 3.65E-01  | 4                        | 0                 | 3.78E-01          | 4.16E-01           | 1.66E-01                    | 8.83E-01                    | 8.83E-01                      | 7.06E-01                           | 4.96E-01                              | 13                            | 81                |
| Lead (Pb)         | µg/m³ | 0.5              | 0.5                                 | 9.93E-04 | 5.93E-03 | 3.01E-03  | San       | 2.65E-03  | San      | 2.05E-03 | 3.03E-03  | 8.76E-04  | 9.07E-04  | 8.83E-04  | San      | 8.71E-04  | 1.82E-03  | 3.13E-03  | 2.72E-03  | 2                        | 0                 | 1.84E-03          | 2.22E-03           | 8.71E-04                    | 5.93E-03                    | 5.93E-03                      | 3.03E-03                           | 3.13E-03                              | 13                            | 81                |
| Magnesium (Mg)    | µg/m³ | -                | -                                   | 2.78E-01 | 4.72E-01 | 2.17E-01  | alid      | 2.47E-01  | bile     | 1.32E-01 | 3.10E-01  | 1.11E-01  | 2.84E-01  | 1.29E-01  | alid     | 9.87E-02  | 1.25E-01  | 3.07E-01  | 1.71E-01  | -                        | -                 | 1.99E-01          | 2.22E-01           | 9.87E-02                    | 4.72E-01                    | 4.72E-01                      | 3.10E-01                           | 3.07E-01                              | 13                            | 81                |
| Manganese (Mn)    | µg/m³ | 0.4              | -                                   | 1.47E-02 | 2.62E-02 | 1.17E-02  | l sõ      | 1.01E-02  | l N      | 7.04E-03 | 1.95E-02  | 5.66E-03  | 1.38E-02  | 5.94E-03  | 2<br>L   | 5.46E-03  | 6.66E-03  | 1.87E-02  | 1.21E-02  | 0.4                      | 0                 | 1.07E-02          | 1.21E-02           | 5.46E-03                    | 2.62E-02                    | 2.62E-02                      | 1.95E-02                           | 1.87E-02                              | 13                            | 81                |
| Molybdenum (Mo)   | µg/m³ | 120              | -                                   | 8.60E-04 | 2.90E-03 | 1.57E-03  |           | 1.67E-03  |          | 1.93E-03 | 1.80E-03  | 1.52E-03  | 1.03E-03  | 7.06E-04  |          | 2.90E-04  | 9.11E-04  | 1.44E-03  | 1.30E-03  | 120                      | 0                 | 1.21E-03          | 1.38E-03           | 2.90E-04                    | 2.90E-03                    | 2.90E-03                      | 1.93E-03                           | 1.44E-03                              | 13                            | 81                |
| Nickel (Ni)       | µg/m³ | 0.2              | -                                   | 9.93E-04 | 1.01E-03 | 9.04E-04  |           | 9.26E-04  |          | 9.03E-04 | 9.29E-04  | 8.76E-04  | 9.07E-04  | 8.83E-04  |          | 8.71E-04  | 8.54E-04  | 9.03E-04  | 8.87E-04  | 0.2                      | 0                 | 9.10E-04          | 9.11E-04           | 8.54E-04                    | 1.01E-03                    | 1.01E-03                      | 9.29E-04                           | 9.03E-04                              | 13                            | 81                |
| Phosphorus (P)    | µg/m³ | -                | -                                   | 2.48E-01 | 2.53E-01 | 2.26E-01  | 1         | 2.31E-01  |          | 2.26E-01 | 2.32E-01  | 2.19E-01  | 2.27E-01  | 2.21E-01  |          | 2.18E-01  | 2.14E-01  | 2.26E-01  | 2.22E-01  |                          | -                 | 2.28E-01          | 2.28E-01           | 2.14E-01                    | 2.53E-01                    | 2.53E-01                      | 2.32E-01                           | 2.26E-01                              | 13                            | 81                |
| Selenium (Se)     | µg/m³ | 10               | 10                                  | 3.31E-03 | 3.37E-03 | 3.01E-03  |           | 3.09E-03  |          | 3.01E-03 | 3.10E-03  | 2.92E-03  | 3.02E-03  | 2.94E-03  |          | 2.90E-03  | 2.85E-03  | 3.01E-03  | 2.96E-03  | 10                       | 0                 | 3.03E-03          | 3.04E-03           | 2.85E-03                    | 3.37E-03                    | 3.37E-03                      | 3.10E-03                           | 3.01E-03                              | 13                            | 81                |
| Silver (Ag)       | µg/m³ | 1                | 1                                   | 3.31E-04 | 3.37E-04 | 3.01E-04  | 1         | 3.09E-04  |          | 3.01E-04 | 3.10E-04  | 2.92E-04  | 3.02E-04  | 2.94E-04  |          | 2.90E-04  | 2.85E-04  | 3.01E-04  | 2.96E-04  | 1                        | 0                 | 3.03E-04          | 3.04E-04           | 2.85E-04                    | 3.37E-04                    | 3.37E-04                      | 3.10E-04                           | 3.01E-04                              | 13                            | 81                |
| Strontium (Sr)    | µg/m³ | 120              | -                                   | 6.29E-03 | 1.21E-02 | 5.00E-03  | ]         | 3.46E-03  |          | 3.55E-03 | 8.11E-03  | 3.27E-03  | 7.44E-03  | 3.88E-03  |          | 2.56E-03  | 3.59E-03  | 6.14E-03  | 3.37E-03  | 120                      | 0                 | 4.78E-03          | 5.29E-03           | 2.56E-03                    | 1.21E-02                    | 1.21E-02                      | 8.11E-03                           | 6.14E-03                              | 13                            | 81                |
| Thallium (Tl)     | µg/m³ | -                | -                                   | 2.98E-05 | 3.03E-05 | 2.71E-05  | 1         | 2.78E-05  |          | 2.71E-05 | 2.79E-05  | 2.63E-05  | 2.72E-05  | 2.65E-05  |          | 2.61E-05  | 2.56E-05  | 2.71E-05  | 2.66E-05  |                          | -                 | 2.73E-05          | 2.73E-05           | 2.56E-05                    | 3.03E-05                    | 3.03E-05                      | 2.79E-05                           | 2.71E-05                              | 13                            | 81                |
| Tin (Sn)          | µg/m³ | 10               | 10                                  | 3.31E-04 | 1.55E-03 | 2.89E-03  |           | 1.36E-03  | 1        | 3.01E-04 | 6.81E-04  | 2.92E-04  | 6.65E-04  | 2.94E-04  |          | 2.90E-04  | 2.85E-04  | 1.38E-03  | 1.06E-03  | 10                       | 0                 | 6.38E-04          | 8.76E-04           | 2.85E-04                    | 2.89E-03                    | 2.89E-03                      | 6.81E-04                           | 1.38E-03                              | 13                            | 81                |
| Titanium (Ti)     | µg/m³ | 120              | -                                   | 1.32E-02 | 1.62E-02 | 8.44E-03  |           | 6.79E-03  | 1        | 6.62E-03 | 1.42E-02  | 3.21E-03  | 1.27E-02  | 7.06E-03  |          | 3.19E-03  | 6.83E-03  | 1.38E-02  | 3.25E-03  | 120                      | 0                 | 7.69E-03          | 8.89E-03           | 3.19E-03                    | 1.62E-02                    | 1.62E-02                      | 1.42E-02                           | 1.38E-02                              | 13                            | 81                |
| Uranium (Ur)      | µg/m³ | 1.5              | -                                   | 3.31E-05 | 3.37E-05 | 3.01E-05  | 1         | 3.09E-05  |          | 3.01E-05 | 3.10E-05  | 2.92E-05  | 3.02E-05  | 2.94E-05  |          | 2.90E-05  | 2.85E-05  | 3.01E-05  | 2.96E-05  | 1.5                      | 0                 | 3.03E-05          | 3.04E-05           | 2.85E-05                    | 3.37E-05                    | 3.37E-05                      | 3.10E-05                           | 3.01E-05                              | 13                            | 81                |
| Vanadium (V)      | µg/m³ | 2                | 1                                   | 1.65E-03 | 1.69E-03 | 1.51E-03  |           | 1.54E-03  |          | 1.50E-03 | 1.55E-03  | 1.46E-03  | 1.51E-03  | 1.47E-03  |          | 1.45E-03  | 1.42E-03  | 1.50E-03  | 1.48E-03  | 2                        | 0                 | 1.52E-03          | 1.52E-03           | 1.42E-03                    | 1.69E-03                    | 1.69E-03                      | 1.55E-03                           | 1.50E-03                              | 13                            | 81                |
| Zinc (Zn)         | µg/m³ | 120              | -                                   | 1.47E-02 | 4.89E-02 | 2.80E-02  | 1         | 2.07E-02  | 1        | 1.05E-01 | 3.60E-02  | 8.58E-03  | 3.40E-02  | 2.60E-02  |          | 1.88E-02  | 1.38E-02  | 2.98E-02  | 5.77E-02  | 120                      | 0                 | 2.76E-02          | 3.40E-02           | 8.58E-03                    | 1.05E-01                    | 4.89E-02                      | 1.05E-01                           | 5.77E-02                              | 13                            | 81                |
| Zirconium (Zr)    | µg/m³ | 20               | -                                   | 6.62E-04 | 6.74E-04 | 6.03E-04  |           | 6.17E-04  |          | 6.02E-04 | 6.19E-04  | 5.84E-04  | 6.05E-04  | 5.89E-04  |          | 5.81E-04  | 5.69E-04  | 6.02E-04  | 5.91E-04  | 20                       | 0                 | 6.07E-04          | 6.07E-04           | 5.69E-04                    | 6.74E-04                    | 6.74E-04                      | 6.19E-04                           | 6.02E-04                              | 13                            | 81                |

NOTE: All non-detectable results were reported as 1/2 of the detection limit
























### Table D1: 3rd Quarter Edit Log for PM2.5 at Courtice Station

| Emitter's N                                                       | mitter's Name: Durham York Energy Centre |                          |                                    |                                                                      |                                    |              |         |                         |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------|--------------------------|------------------------------------|----------------------------------------------------------------------|------------------------------------|--------------|---------|-------------------------|--|--|--|--|
| Contact                                                           | Name: Ms. Lyndsay                        | Waller                   | <b>Phone:</b> (905) 404-0888 ext 4 | 107                                                                  | 07 Email: Lyndsay.Waller@Durham.ca |              |         |                         |  |  |  |  |
| Station Nu                                                        | <b>mber:</b> 45201                       |                          | Station Name: Cour                 | Station Name: Courtice Station                                       |                                    |              |         |                         |  |  |  |  |
| Station Ad                                                        | dress: 100 Osbourne                      | Road                     | Emitter Address: Th                | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                    |              |         |                         |  |  |  |  |
| Pollutants or Parameter: PM <sub>2.5</sub> Instrument Make & Mode |                                          |                          |                                    | : Thermo Scientific Mo                                               | odel 5030 SF                       | HARP Monitor |         | <b>s/n:</b> E-1563      |  |  |  |  |
| Data Edit P                                                       | eriod                                    | Start Date: July 1, 2020 |                                    | End Date: September 30, 2020                                         |                                    |              |         | All testing done in EST |  |  |  |  |
|                                                                   |                                          |                          |                                    | Starting                                                             |                                    | Ending       |         |                         |  |  |  |  |
| Edit #                                                            |                                          | Editor's Name            | Edit Action                        | Date                                                                 | Hour                               | Date         | Hour    | Reason                  |  |  |  |  |
| (dd/mm/yyyy)                                                      |                                          |                          |                                    | (dd/mm/yyyy)                                                         | (xx:xx)                            | (dd/mm/yyyy) | (xx:xx) |                         |  |  |  |  |
| 1                                                                 | 09/07/2020                               | SRS                      | Deleted Hours                      | 09/07/2020                                                           | 09:00                              | 09/07/2020   | 12:00   | Monthly Calibration     |  |  |  |  |
| 2                                                                 | 05/08/2020                               | SRS                      | Deleted Hours                      | 05/08/2020                                                           | 12:00                              | 05/08/2020   | 15:00   | Monthly Calibration     |  |  |  |  |
| 3                                                                 | 03/09/2020                               | SRS                      | Deleted Hours                      | 03/09/2020                                                           | 13:00                              | 03/09/2020   | 15:00   | Monthly Calibration     |  |  |  |  |

### Table D2: 3rd Quarter Edit Log for PM2.5 at Rundle Road Station

| Emitter's N                                                       | itter's Name: Durham York Energy Centre |               |                                    |                                                                      |                                    |              |                           |                           |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------|---------------|------------------------------------|----------------------------------------------------------------------|------------------------------------|--------------|---------------------------|---------------------------|--|--|--|--|
| Contact                                                           | Name: Ms. Lyndsay                       | Waller        | <b>Phone:</b> (905) 404-0888 ext 4 | 107                                                                  | 07 Email: Lyndsay.Waller@Durham.ca |              |                           |                           |  |  |  |  |
| Station Nu                                                        | <b>mber:</b> 45200                      |               |                                    | Station Name: Rundle Road Station                                    |                                    |              |                           |                           |  |  |  |  |
| Station Ad                                                        | dress: Rundle Road                      |               |                                    | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                    |              |                           |                           |  |  |  |  |
| Pollutants or Parameter: PM <sub>2.5</sub> Instrument Make & Mode |                                         |               | l: Thermo Scientific Mo            | odel 5030 SH                                                         | HARP Monitor                       |              | <b>s/n:</b> E-1569        |                           |  |  |  |  |
| Data Edit Period Start Date: July 1, 2020                         |                                         |               | End Date: Septembe                 | r 30, 2020                                                           |                                    |              | All testing done in EST   |                           |  |  |  |  |
|                                                                   |                                         |               |                                    | Starting                                                             | Ending                             |              | <u>.</u>                  |                           |  |  |  |  |
| Edit #                                                            |                                         | Editor's Name | Edit Action                        | Date                                                                 | Hour                               | Date         | Hour                      | Reason                    |  |  |  |  |
|                                                                   | (aa/mm/yyyy)                            |               |                                    | (dd/mm/yyyy)                                                         | (xx:xx)                            | (dd/mm/yyyy) | (xx:xx)                   |                           |  |  |  |  |
| 1                                                                 | 09/07/2020                              | SRS           | Deleted Hours                      | 09/07/2020                                                           | 14:00                              | 09/07/2020   | 16:00                     | Monthly Calibration       |  |  |  |  |
| 2                                                                 | 18/08/2020                              | VML           | Zero correction                    | 01/07/2020                                                           | 00:00                              | 31/07/2020   | 23:00                     | Correcting values <0 to 0 |  |  |  |  |
| 3                                                                 | 06/08/2020                              | SRS           | Deleted Hours                      | 06/08/2020                                                           | 19:00                              | 06/08/2020   | 20:00                     | Monthly Calibration       |  |  |  |  |
| 4                                                                 | 21/09/2020                              | VML           | Zero correction                    | 01/08/2020 00:00 31/08/2020 23                                       |                                    | 23:00        | Correcting values <0 to 0 |                           |  |  |  |  |
| 5                                                                 | 02/09/2020                              | SRS           | Deleted Hours                      | 02/09/2020                                                           | 14:00                              | 02/09/2020   | 16:00                     | Monthly Calibration       |  |  |  |  |
| 6                                                                 | 19/10/2020                              | VML           | Zero correction                    | 01/09/2020                                                           | 00:00                              | 30/09/2020   | 23:00                     | Correcting values <0 to 0 |  |  |  |  |

### Table D3: 3rd Quarter Edit Log for NOx at Courtice Station

| Emitter's N                        | mitter's Name: Durham York Energy Centre          |               |                                    |                                |                                                                      |                                                                  |        |                                                                             |  |  |  |  |
|------------------------------------|---------------------------------------------------|---------------|------------------------------------|--------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--------|-----------------------------------------------------------------------------|--|--|--|--|
| Contact                            | Name: Ms. Lyndsay                                 | Waller        | <b>Phone:</b> (905) 404-0888 ext 4 | 107                            | 07 Email: Lyndsay.Waller@Durham.ca                                   |                                                                  |        |                                                                             |  |  |  |  |
| Station Nu                         | i <b>mber:</b> 45201                              |               | Station Name: Cour                 | Station Name: Courtice Station |                                                                      |                                                                  |        |                                                                             |  |  |  |  |
| Station Address: 100 Osbourne Road |                                                   |               |                                    | Emitter Address: Th            | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                                                  |        |                                                                             |  |  |  |  |
| Pollutants                         | or Parameter: NOx                                 |               | Instrument Make & Model            | : Teledyne Nitrogen O          | xide Analyz                                                          | er Model T200                                                    |        | <b>s/n:</b> 675                                                             |  |  |  |  |
| Data Edit F                        | Data Edit Period         Start Date: July 1, 2020 |               |                                    | End Date: Septembe             | r 30, 2020                                                           |                                                                  |        | All testing done in EST                                                     |  |  |  |  |
|                                    | Edit date                                         |               |                                    | Starting                       |                                                                      | Ending                                                           |        |                                                                             |  |  |  |  |
| Edit #                             | (dd/mm/yyyy)                                      | Editor's Name | Edit Action                        | Date<br>(dd/mm/vvvv)           | Date Hour Date<br>(dd/mm/yyyy) (xx:xx) (dd/mm/yyyy) (;               | Hour<br>(xx:xx)                                                  | Reason |                                                                             |  |  |  |  |
| 1                                  | 09/07/2020                                        | SRS           | Deleted Hours                      | 09/07/2020                     | 09:00                                                                | 09/07/2020                                                       | 11:00  | Monthly Calibration                                                         |  |  |  |  |
| 2                                  | 18/08/2020                                        | VML           | Zero correction                    | 01/07/2020                     | 00:00                                                                | 31/07/2020                                                       | 23:00  | Correcting values <0 to 0                                                   |  |  |  |  |
| 3                                  | 05/08/2020                                        | SRS           | Deleted Hours                      | 05/08/2020                     | 11:00                                                                | 05/08/2020                                                       | 17:00  | Monthly Calibration, Maintenance and GPT                                    |  |  |  |  |
| 4                                  | 06/08/2020                                        | SRS           | Deleted Hours                      | 06/08/2020                     | 14:00                                                                | 06/08/2020                                                       | 16:00  | Calibration Check after Maintenance                                         |  |  |  |  |
| 5                                  | 21/09/2020                                        | VML           | Zero offset adjustment             | 05/08/2020                     | 17:00                                                                | 06/08/2020                                                       | 14:00  | Correcting zero offset based on takeout calibration                         |  |  |  |  |
|                                    |                                                   |               |                                    |                                |                                                                      |                                                                  |        | Calibration check after remote observation of a reduction in ozone flow and |  |  |  |  |
| 6                                  | 27/08/2020                                        | CDC           | Deleted Hours                      | 27/08/2020                     | 11.00                                                                | 27/08/2020                                                       | 16:00  | drifting overnight span. The unit was performing within specification,      |  |  |  |  |
| 0                                  | 2770872020                                        | 5/13          |                                    |                                | 10.00                                                                | however it was removed and replaced with a spare unit to further |        |                                                                             |  |  |  |  |
|                                    |                                                   |               |                                    |                                |                                                                      |                                                                  |        | troubleshoot the reduction in ozone flow.                                   |  |  |  |  |
| 7                                  | 21/09/2020                                        | VML           | Zero correction                    | 01/08/2020 00:00 31/08/2020    |                                                                      |                                                                  | 23:00  | Correcting values <0 to 0                                                   |  |  |  |  |
| 8                                  | 03/09/2020                                        | SRS           | Deleted Hours                      | 03/09/2020                     | 11:00                                                                | 03/09/2020                                                       | 13:00  | Monthly Calibration                                                         |  |  |  |  |
| 9                                  | 19/10/2020                                        | VML           | Zero correction                    | 01/09/2020                     | 00:00                                                                | 30/09/2020                                                       | 23:00  | Correcting values <0 to 0                                                   |  |  |  |  |

### Table D4: 3rd Quarter Edit Log for NOx at Rundle Road Station

| Emitter's N                                       | <b>Jame:</b> Durham York E                         | nergy Centre  |                              |                                                                      |                                    |                                |                           |                                                                                  |  |  |  |  |
|---------------------------------------------------|----------------------------------------------------|---------------|------------------------------|----------------------------------------------------------------------|------------------------------------|--------------------------------|---------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Contact                                           | Name: Ms. Lyndsay                                  | Waller        | Phone: (905) 404-0888 ext    | 4107                                                                 | 07 Email: Lyndsay.Waller@Durham.ca |                                |                           |                                                                                  |  |  |  |  |
| Station Nu                                        | <b>mber:</b> 45200                                 |               | Station Name: Run            | tation Name: Rundle Road Station                                     |                                    |                                |                           |                                                                                  |  |  |  |  |
| Station Ad                                        | dress: Rundle Road                                 |               | Emitter Address: T           | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                    |                                |                           |                                                                                  |  |  |  |  |
| Pollutants                                        | Pollutants or Parameter: NOx Instrument Make & Moo |               |                              |                                                                      | Dxide Analyz                       | er Model T200                  |                           | <b>s/n:</b> 676                                                                  |  |  |  |  |
| Data Edit Period         Start Date: July 1, 2020 |                                                    | )             | End Date: September 30, 2020 |                                                                      |                                    |                                | All testing done in EST   |                                                                                  |  |  |  |  |
| Edit #                                            | Edit date<br>(dd/mm/yyyy)                          | Editor's Name | Edit Action                  | Starting Date (dd/mm/vvvv)                                           | Hour<br>(xx:xx)                    | Ending<br>Date<br>(dd/mm/yyyy) | Hour<br>(xx:xx)           | Reason                                                                           |  |  |  |  |
| 1                                                 | 09/07/2020                                         | SRS           | Deleted Hours                | 09/07/2020                                                           | 15:00                              | 09/07/2020                     | 17:00                     | Monthly Calibration                                                              |  |  |  |  |
| 2                                                 | 18/08/2020                                         | VML           | Zero correction              | 01/07/2020                                                           | 00:00                              | 31/07/2020                     | 23:00                     | Correcting values <0 to 0                                                        |  |  |  |  |
| 3                                                 | 06/08/2020                                         | SRS           | Deleted Hours                | 06/08/2020                                                           | 17:00                              | 06/08/2020                     | 19:00                     | Monthly Calibration and GPT                                                      |  |  |  |  |
| 4                                                 | 27/08/2020                                         | SRS           | Deleted Hours                | 27/08/2020                                                           | 11:00                              | 27/08/2020                     | 16:00                     | Maintenance: Rebuilt pump was reinstalled, and a calibration was performed after |  |  |  |  |
| 5                                                 | 21/09/2020                                         | VML           | Zero correction              | 01/08/2020 00:00 31/08/2020 23                                       |                                    | 23:00                          | Correcting values <0 to 0 |                                                                                  |  |  |  |  |
| 6                                                 | 02/09/2020                                         | SRS           | Deleted Hours                | 02/09/2020                                                           | 12:00                              | 02/09/2020                     | 15:00                     | Monthly Calibration                                                              |  |  |  |  |
| 7                                                 | 19/10/2020                                         | VML           | Zero correction              | 01/09/2020                                                           | 00:00                              | 30/09/2020                     | 23:00                     | Correcting values <0 to 0                                                        |  |  |  |  |

### Table D5: 3rd Quarter Edit Log for SO2 at Courtice Station

| Emitter's N                                                    | hitter's Name: Durham York Energy Centre |               |                                    |                                                                      |                                    |              |                           |                                                    |  |  |  |  |
|----------------------------------------------------------------|------------------------------------------|---------------|------------------------------------|----------------------------------------------------------------------|------------------------------------|--------------|---------------------------|----------------------------------------------------|--|--|--|--|
| Contact                                                        | Name: Ms. Lyndsay                        | Waller        | <b>Phone:</b> (905) 404-0888 ext 4 | 107                                                                  | 07 Email: Lyndsay.Waller@Durham.ca |              |                           |                                                    |  |  |  |  |
| Station Nu                                                     | <b>mber:</b> 45201                       |               | Station Name: Cour                 | Station Name: Courtice Station                                       |                                    |              |                           |                                                    |  |  |  |  |
| Station Ad                                                     | dress: 100 Osbourne                      | Road          | Emitter Address: Th                | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                    |              |                           |                                                    |  |  |  |  |
| Pollutants or Parameter: SO <sub>2</sub> Instrument Make & Mod |                                          |               |                                    | : Teledyne Sulfur Dio>                                               | kide Analyze                       | r Model T100 |                           | <b>s/n:</b> 565                                    |  |  |  |  |
| Data Edit Period         Start Date: July 1, 2020              |                                          |               | End Date: Septembe                 | r 30, 2020                                                           |                                    |              | All testing done in EST   |                                                    |  |  |  |  |
|                                                                | Edit Data                                | Editor's Name | Edit Action                        | Starting                                                             |                                    | Ending       |                           |                                                    |  |  |  |  |
| Edit #                                                         | (dd/mm/aaaa)                             |               |                                    | Date                                                                 | Hour                               | Date         | Hour                      | Reason                                             |  |  |  |  |
|                                                                | (uu/iiii/yyyy)                           |               |                                    | (dd/mm/yyyy)                                                         | (XX:XX)                            | (dd/mm/yyyy) | (XX:XX)                   |                                                    |  |  |  |  |
| 1                                                              | 09/07/2020                               | SRS           | Deleted Hours                      | 09/07/2020                                                           | 08:00                              | 09/07/2020   | 12:00                     | Monthly Calibration                                |  |  |  |  |
| 2                                                              | 18/08/2020                               | VML           | Zero offset adjustment             | 01/07/2020                                                           | 00:00                              | 09/07/2020   | 08:00                     | Correcting zero drift based on takeout calibration |  |  |  |  |
| 3                                                              | 18/08/2020                               | VML           | Zero correction                    | 01/07/2020                                                           | 00:00                              | 31/07/2020   | 23:00                     | Correcting values <0 to 0                          |  |  |  |  |
| 4                                                              | 05/08/2020                               | SRS           | Deleted Hours                      | 05/08/2020                                                           | 13:00                              | 05/08/2020   | 16:00                     | Monthly Calibration                                |  |  |  |  |
| 5                                                              | 21/09/2020                               | VML           | Zero correction                    | 01/08/2020 00:00 31/08/2020 2                                        |                                    | 23:00        | Correcting values <0 to 0 |                                                    |  |  |  |  |
| 6                                                              | 03/09/2020                               | SRS           | Deleted Hours                      | 03/09/2020                                                           | 12:00                              | 03/09/2020   | 15:00                     | Monthly Calibration                                |  |  |  |  |
| 7                                                              | 19/10/2020                               | VML           | Zero correction                    | 01/09/2020                                                           | 01/09/2020 00:00 30/09/2020 23:00  |              | 23:00                     | Correcting values <0 to 0                          |  |  |  |  |

### Table D6: 3rd Quarter Edit Log for SO2 at Rundle Road Station

| Emitter's N                                                     | itter's Name: Durham York Energy Centre |                    |                                    |                                                                      |                                   |                                                 |          |                                            |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------|--------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------|-------------------------------------------------|----------|--------------------------------------------|--|--|--|
| Contact                                                         | Name: Ms. Lyndsay                       | Waller             | <b>Phone:</b> (905) 404-0888 ext 4 | 107                                                                  | 7 Email: Lyndsay.Waller@Durham.ca |                                                 |          |                                            |  |  |  |
| Station Nu                                                      | <b>mber:</b> 45200                      |                    | Station Name: Rund                 | tation Name: Rundle Road Station                                     |                                   |                                                 |          |                                            |  |  |  |
| Station Ad                                                      | dress: Rundle Road                      |                    | Emitter Address: Th                | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                   |                                                 |          |                                            |  |  |  |
| Pollutants or Parameter: SO <sub>2</sub> Instrument Make & Mode |                                         |                    | l: Teledyne Sulfur Dio×            | kide Analyze                                                         | r Model T100                      |                                                 | s/n: 566 |                                            |  |  |  |
| Data Edit Period         Start Date: July 1, 2020               |                                         | End Date: Septembe | r 30, 2020                         |                                                                      |                                   | All testing done in EST                         |          |                                            |  |  |  |
|                                                                 |                                         |                    |                                    | Starting                                                             | Ending                            |                                                 | ·        |                                            |  |  |  |
| Edit #                                                          |                                         | Editor's Name      | Edit Action                        | Date                                                                 | Hour                              | Date                                            | Hour     | Reason                                     |  |  |  |
|                                                                 | (dd/mm/yyyy)                            |                    |                                    | (dd/mm/yyyy)                                                         | (xx:xx)                           | (dd/mm/yyyy)                                    | (xx:xx)  |                                            |  |  |  |
| 1                                                               | 09/07/2020                              | SRS                | Deleted Hours                      | 09/07/2020                                                           | 14:00                             | 09/07/2020                                      | 16:00    | Monthly Calibration                        |  |  |  |
| 2                                                               | 18/08/2020                              | VML                | Zero correction                    | 01/07/2020                                                           | 00:00                             | 31/07/2020                                      | 23:00    | Correcting values <0 to 0                  |  |  |  |
| 3                                                               | 06/08/2020                              | SRS                | Deleted Hours                      | 06/08/2020                                                           | 19:00                             | 06/08/2020                                      | 20:00    | Monthly Calibration                        |  |  |  |
| 4                                                               | 21/09/2020                              | VML                | Zero correction                    | 01/08/2020                                                           | 00:00                             | D:00 31/08/2020 23:00 Correcting values <0 to 0 |          | Correcting values <0 to 0                  |  |  |  |
| 5                                                               | 02/09/2020                              | SRS                | Deleted Hours                      | 02/09/2020                                                           | 02/09/2020 12:00 02/09/2020 19:0  |                                                 | 19:00    | Monthly Calibration and Annual Maintenance |  |  |  |
| 6                                                               | 19/10/2020                              | VML                | Zero correction                    | 01/09/2020                                                           | 00:00                             | 30/09/2020                                      | 23:00    | Correcting values <0 to 0                  |  |  |  |

### Table D7: 3rd Quarter Edit Log for Meteorological Parameters at Courtice Road Station

| Emitter's N                                                                       | mitter's Name: Durham York Energy Centre                   |                          |                                |                                                      |                                                                      |              |         |                         |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------|---------|-------------------------|--|--|--|
| Contact                                                                           | ntact Name: Ms. Lyndsay Waller Phone: (905) 404-0888 ext 4 |                          |                                | 107                                                  | 07 Email: Lyndsay.Waller@Durham.ca                                   |              |         |                         |  |  |  |
| Station Nu                                                                        | <b>mber:</b> 45201                                         |                          | Station Name: Courtice Station |                                                      |                                                                      |              |         |                         |  |  |  |
| Station Address: 100 Osbourne Road                                                |                                                            |                          |                                | Emitter Address: Th                                  | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |              |         |                         |  |  |  |
| Pollutants or Parameter: WS, WD, Ambient T, P, RH and Instrument Make & Mode Rain |                                                            |                          | Instrument Make & Model:       | Miscellaneous Meterological Instrumentation s/n: N/A |                                                                      |              |         |                         |  |  |  |
| Data Edit P                                                                       | eriod                                                      | Start Date: July 1, 2020 |                                | End Date: September 30, 2020                         |                                                                      |              |         | All testing done in EST |  |  |  |
| Editedate                                                                         |                                                            |                          |                                | Starting Ending                                      |                                                                      |              |         |                         |  |  |  |
| Edit #                                                                            | Edit # (dd/mm/unnu) Editor's Name                          |                          | Edit Action                    | Date                                                 | Hour                                                                 | Date         | Hour    | Reason                  |  |  |  |
|                                                                                   | (uu/iiiii/yyyy)                                            |                          |                                | (dd/mm/yyyy)                                         | (xx:xx)                                                              | (dd/mm/yyyy) | (xx:xx) |                         |  |  |  |
| 1                                                                                 | 21/09/2020                                                 | VML                      | Deleted Hours                  | 20/08/2020                                           | 08:00                                                                | 20/08/2020   | 11:00   | Annual Calibration      |  |  |  |

#### Table D8: 3rd Quarter Edit Log for Meteorological Parameters at Rundle Road Station

| Emitter's N                                                | itter's Name: Durham York Energy Centre |                          |                                                 |                                                                      |                                                      |               |         |                                                                              |  |  |
|------------------------------------------------------------|-----------------------------------------|--------------------------|-------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|---------------|---------|------------------------------------------------------------------------------|--|--|
| Contact                                                    | Name: Ms. Lyndsay V                     | Waller                   | <b>Phone:</b> (905) 404-0888 ext 4 <sup>-</sup> | 107                                                                  | 07 Email: Lyndsay.Waller@Durham.ca                   |               |         |                                                                              |  |  |
| Station Nu                                                 | <b>mber:</b> 45200                      |                          |                                                 | Station Name: Rundle Station                                         |                                                      |               |         |                                                                              |  |  |
| Station Address: Rundle Road                               |                                         |                          |                                                 | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                                      |               |         |                                                                              |  |  |
| Pollutants or Parameter: WS, WD, Ambient T, P, RH and Rain |                                         |                          | Instrument Make & Model:                        | Miscellaneous Metero                                                 | Aiscellaneous Meterological Instrumentation s/n: N/A |               |         |                                                                              |  |  |
| Data Edit P                                                | eriod                                   | Start Date: July 1, 2020 |                                                 | End Date: September                                                  | r 30, 2020                                           |               |         | All testing done in EST                                                      |  |  |
|                                                            | Edit date                               |                          |                                                 | Starting                                                             |                                                      | Ending        |         |                                                                              |  |  |
| Edit # (dd/mm/yyyy) Editor's Name                          |                                         | Edit Action              | Date<br>(dd/mm/www)                             | Hour<br>(xx:xx)                                                      | Date<br>(dd/mm/www)                                  | Hour          | Reason  |                                                                              |  |  |
|                                                            |                                         |                          |                                                 | (uu/iiii/yyyy)                                                       | (~~~)                                                | (du/min/yyyy) | (XX.XX) | Removal of old tower and installation/calibration of meterological equipment |  |  |
| 1                                                          | 21/09/2020                              | VML                      | Deleted Hours                                   | 20/08/2020                                                           | 10:00                                                | 20/08/2020    | 13:00   | on the new tower                                                             |  |  |

#### Table D9: 3rd Quarter Edit Log for Discrete Sampling at Courtice Station

| Emitter's l                  | mitter's Name: Durham York Energy Center |                     |                                                                      |                                                   |                 |                      |                 |                                                                        |  |  |  |
|------------------------------|------------------------------------------|---------------------|----------------------------------------------------------------------|---------------------------------------------------|-----------------|----------------------|-----------------|------------------------------------------------------------------------|--|--|--|
| Contact                      | Name: Ms. Lynds                          | ay Waller           | Phone: (905) 404-08                                                  | 8 ext 4107 <b>Email:</b> Lyndsay.Waller@Durham.ca |                 |                      |                 |                                                                        |  |  |  |
| Station Nu                   | u <b>mber:</b> 45201                     |                     | Station Name: Courtice Station                                       |                                                   |                 |                      |                 |                                                                        |  |  |  |
| Station Ad                   | ldress: 100 Osbouri                      | ne Road             | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                                   |                 |                      |                 |                                                                        |  |  |  |
| Pollutants or Parameter: N/A |                                          | Instrument Make &   | Model: N/A                                                           |                                                   | s/n:            |                      |                 |                                                                        |  |  |  |
| Data Edit I                  | Period                                   | Start Date: July 1, | 2020                                                                 | End Date: Septembe                                | er 30, 2020     |                      |                 | All testing done in EST                                                |  |  |  |
|                              | Edit date                                |                     |                                                                      | Starting                                          |                 | Ending               |                 |                                                                        |  |  |  |
| Edit #                       | (dd/mm/yyyy)                             | Editor's Name       | Edit Action                                                          | Date<br>(dd/mm/yyyy)                              | Hour<br>(xx:xx) | Date<br>(dd/mm/yyyy) | Hour<br>(xx:xx) | Reason                                                                 |  |  |  |
| 1                            | 18/08/2020                               | VML                 | Invalidated Sample<br>(PS1)                                          | 26/07/2020                                        | 00:00           | 26/07/2020           | 23:59           | Invalid PS1 Sample on July 26: Media caused excessive flow restriction |  |  |  |
| 2                            | 21/09/2020                               | VML                 | Invalidated Sample<br>(PS1)                                          | 19/08/2020                                        | 00:00           | 19/08/2020           | 23:59           | Invalid PS1 Sample on Aug. 19: Media caused excessive flow restriction |  |  |  |

#### Table D10: 3rd Quarter Edit Log for Discrete Sampling at Rundle Station

| Emitter's                           | Name: Durham Yo     | ork Energy Center     |                                                                      |                                                    |             |              |         |                                 |  |  |
|-------------------------------------|---------------------|-----------------------|----------------------------------------------------------------------|----------------------------------------------------|-------------|--------------|---------|---------------------------------|--|--|
| Contact                             | Name: Ms. Lynds     | ay Waller             | <b>Phone:</b> (905) 404-08                                           | 88 ext 4107 <b>Email:</b> Lyndsay.Waller@Durham.ca |             |              |         |                                 |  |  |
| Station N                           | <b>umber:</b> 45200 |                       | Station Name: Rundle Station                                         |                                                    |             |              |         |                                 |  |  |
| Station A                           | ddress: Rundle Rd   |                       | Emitter Address: The Region of Durham, 605 Rossland Road, Whitby, ON |                                                    |             |              |         |                                 |  |  |
| Pollutant                           | s or Parameter: N   | I/A                   | Instrument Make 8                                                    | Model: N/A                                         |             |              |         | s/n:                            |  |  |
| Data Edit Period Start Date: July 1 |                     | Start Date: July 1, 2 | 020                                                                  | End Date: Septem                                   | ber 30, 202 | 20           |         | All testing done in EST         |  |  |
|                                     | Edit date           |                       |                                                                      | Starting                                           | ş           | Ending       |         |                                 |  |  |
| Edit #                              | (dd/mm/yyyy)        | Editor's Name         | Edit Action                                                          | Date                                               | Hour        | Date         | Hour    | Reason                          |  |  |
|                                     |                     |                       |                                                                      | (dd/mm/yyyy)                                       | (XX:XX)     | (dd/mm/yyyy) | (XX:XX) |                                 |  |  |
| 1                                   | 18/08/2020          | VML                   | Invalidated Sample                                                   | 20/07/2020                                         | 00:00       | 20/07/2020   | 23:59   | Invalid TSP Sample on July 20:  |  |  |
| · .                                 | 10/00/2020          | 2                     | (TSP)                                                                | 20/07/2020                                         |             | 20/07/2020   | 20.05   | Bird damaged the filter         |  |  |
|                                     |                     |                       | Invalidated Sample                                                   |                                                    |             |              |         | Invalid PS1 Sample on July 26:  |  |  |
| 2                                   | 18/08/2020          | VML                   | (DC1)                                                                | 26/07/2020                                         | 00:00       | 26/07/2020   | 23:59   | Media caused excessive flow     |  |  |
|                                     |                     |                       | (PST)                                                                |                                                    |             |              |         | restriction                     |  |  |
| 2                                   | 21/00/2020          | VAL                   | Invalidated Sample                                                   | 01/08/2020                                         | 00:00       | 01/09/2020   | 22.50   | Invalid TSP Sample on August 1: |  |  |
| 5                                   | 21/09/2020          | VIVIL                 | (TSP)                                                                | 01/08/2020                                         | 00.00       | 01/08/2020   | 25.59   | Bird damaged the filter         |  |  |
| 4                                   | 10/10/2020          | VIMI                  | Invalidated Sample                                                   | 06/00/2020                                         | 00:00       | 06/00/2020   | 22.50   | Invalid TSP Sample on Sept. 6:  |  |  |
| 4                                   | 19/10/2020          | VIVIL                 | (TSP)                                                                | 00/09/2020                                         | 00.00       | 00/09/2020   | 25.59   | Excessive volume sampled        |  |  |









### Table E1. SO<sub>2</sub> Courtice Monitoring Station 10-min Running Average Exceedance Period on August 15, 2020

| Date & Time      | Wind Direction | SO <sub>2</sub> 5-min Avg. | SO <sub>2</sub> 10-min Running Avg. |     |
|------------------|----------------|----------------------------|-------------------------------------|-----|
| EST              | •              | ppb                        | ppb                                 |     |
| 15/08/2020 09:15 | 98.22          | 52.828                     | 62.223                              | ]   |
| 15/08/2020 09:20 | 01.4           | 54.49                      | 53.659                              | ]   |
| 15/08/2020 09:25 | 51.4           | 64.883                     | 59.686                              | ]   |
| 15/08/2020 09:30 | 101 76         | 70.336                     | <u>67.61</u>                        |     |
| 15/08/2020 09:35 | 101.70         | 55.01                      | <u>62.673</u>                       | l L |
| 15/08/2020 09:40 | OF 44          | 46.932                     | 50.971                              | ]   |
| 15/08/2020 09:45 | 95.44          | 50.913                     | 48.923                              | ]   |
| 15/08/2020 09:50 | 05.01          | 34.911                     | 42.912                              | ]   |
| 15/08/2020 09:55 | 55.91          | 12.772                     | 23.842                              | ]   |
| 15/08/2020 10:00 | 92.19          | 10.547                     | 11.66                               | ]   |

| D, T & V     |
|--------------|
| <u>Max</u>   |
| Min          |
| Faded Values |
|              |
| }            |
| #            |

Date, Time & Exceedance Value Reported (Reported exceedance is the first running avg. value highlighted)

Maximum of the Range

Minimum of the Range

These values are not used to calculate the number of reportable exceedances Range of 5-minute measurements that contribute to the exceedance value Range of running average values during exceedance period Exceedance number

### Table E2. SO<sub>2</sub> Courtice Monitoring Station 10-min Running Average Exceedance Period on August 25, 2020

| Date & Time      | Wind Direction | SO <sub>2</sub> 5-min Avg. | SO <sub>2</sub> 10-min Running Avg. |      |
|------------------|----------------|----------------------------|-------------------------------------|------|
| EST              | 0              | ppb                        | ppb                                 |      |
| 25/08/2020 23:25 | 181.84         | 1.516                      | 1.787                               |      |
| 25/08/2020 23:30 | 176 74         | 0.956                      | 1.236                               |      |
| 25/08/2020 23:35 | 170.74         | 17.434                     | 9.195                               |      |
| 25/08/2020 23:40 | 166.97         | 167.617                    | <u>92.526</u>                       | ר ו  |
| 25/08/2020 23:45 | 100.07         | 51.863                     | <u>109.74</u>                       | ו רן |
| 25/08/2020 23:50 | 159.62         | 8.271                      | 30.067                              |      |
| 25/08/2020 23:55 | 139.02         | 4.267                      | 6.269                               |      |
| 26/08/2020 00:00 | 195.24         | 2.624                      | 3.446                               |      |
| 26/08/2020 00:05 | 185.24         | 2.012                      | 2.318                               |      |
| 26/08/2020 00:10 | 189.53         | 1.731                      | 1.872                               |      |

| D, T & V     |
|--------------|
| <u>Max</u>   |
| <u>Min</u>   |
| Faded Values |
|              |
| }            |
| #            |

Date, Time & Exceedance Value Reported (Reported exceedance is the first running avg. value highlighted)

Maximum of the Range

Minimum of the Range

These values are not used to calculate the number of reportable exceedances Range of 5-minute measurements that contribute to the exceedance value Range of running average values during exceedance period Exceedance number

| Date & Time      | Wind Direction | SO <sub>2</sub> 5-min Avg. | SO <sub>2</sub> 10-min Running Avg. |
|------------------|----------------|----------------------------|-------------------------------------|
| EST              | o              | ppb                        | ppb                                 |
| 25/09/2020 12:35 | 128.04         | 43.509                     | 39.717                              |
| 25/09/2020 12:40 | 126.41         | 42.485                     | 42.997                              |
| 25/09/2020 12:45 | 121.86         | 66.08                      | 54.283                              |
| 25/09/2020 12:50 | 114.79         | 69.609                     | <u>67.845</u>                       |
| 25/09/2020 12:55 | 126.56         | 47.978                     | <u>58.793</u>                       |
| 25/09/2020 13:00 | 129.3          | 40.145                     | 44.062                              |
| 25/09/2020 13:05 | 154.16         | 29.568                     | 34.857                              |
| 25/09/2020 13:10 | 165.53         | 17.376                     | 23.472                              |
| 25/09/2020 13:15 | 156.93         | 15.59                      | 16.483                              |
| 25/09/2020 13:20 | 164.01         | 10.188                     | 12.889                              |

### Table E3. SO<sub>2</sub> Rundle Monitoring Station 10-min Running Average Exceedance Period on September 25, 2020

| D, T & V     |
|--------------|
| <u>Max</u>   |
| Min          |
| Faded Values |
|              |
| }            |
| #            |

Date, Time & Exceedance Value Reported (Reported exceedance is the first running avg. value highlighted) Maximum of the Range Minimum of the Range These values are not used to calculate the number of reportable exceedances Range of 5-minute measurements that contribute to the exceedance value Range of running average values during exceedance period

Exceedance number





Table E4.  $SO_2$  Courtice Monitoring Station 1-Hour Running Average Exceedance Periods on August 15, 2020

|                  |                | SO <sub>2</sub> 5-min | SO <sub>2</sub> 1-hr |   |
|------------------|----------------|-----------------------|----------------------|---|
| Date & Time      | Wind Direction | Avg.                  | Running Avg.         |   |
| EST              | ٥              | ppb                   | ppb                  |   |
| 15/08/2020 08:15 | 115.64         | 20.756                | 4.213                |   |
| 15/08/2020 08:20 | 120.10         | 18.64                 | 5.704                |   |
| 15/08/2020 08:25 | 120.16         | 17.07                 | 7.081                |   |
| 15/08/2020 08:30 | 120.74         | 26.327                | 9.227                |   |
| 15/08/2020 08:35 | 120.74         | 30.694                | 11.745               |   |
| 15/08/2020 08:40 | 112.24         | 44.253                | 15.397               |   |
| 15/08/2020 08:45 | 115.54         | 55.944                | 20.022               |   |
| 15/08/2020 08:50 | 1177           | 43.625                | 23.606               |   |
| 15/08/2020 08:55 | 117.7          | 44.664                | 27.254               |   |
| 15/08/2020 09:00 | 98.96          | 57.078                | 31.929               |   |
| 15/08/2020 09:05 | 98.90          | 33.068                | 34.494               |   |
| 15/08/2020 09:10 | 98.22          | 71.618                | 38.645               |   |
| 15/08/2020 09:15 | 50.22          | 52.828                | 41.317               |   |
| 15/08/2020 09:20 | Q1 /           | 54.49                 | 44.305               |   |
| 15/08/2020 09:25 | 51.4           | 64.883                | 48.289               |   |
| 15/08/2020 09:30 | 101 76         | 70.336                | 51.957               |   |
| 15/08/2020 09:35 | 101.70         | 55.01                 | 53.983               |   |
| 15/08/2020 09:40 | 95 44          | 46.932                | <u>54.206</u>        | 1 |
| 15/08/2020 09:45 | 95.44          | 50.913                | 53.787               | 1 |
| 15/08/2020 09:50 | 05 01          | 34.911                | 53.061               |   |
| 15/08/2020 09:55 | 55.91          | 12.772                | 50.403               |   |
| 15/08/2020 10:00 | 92.19          | 10.547                | 46.526               |   |
| 15/08/2020 10:05 | 92.19          | 9.687                 | 44.577               |   |
| 15/08/2020 10:10 | 06.46          | 6.053                 | <u>39.114</u>        |   |
| 15/08/2020 10:15 | 90.40          | 9.142                 | 35.473               |   |
| 15/08/2020 10:20 | 102.1          | 6.986                 | 31.514               |   |
| 15/08/2020 10:25 | 102.1          | 3.617                 | 26.409               |   |
| 15/08/2020 10:30 | 0/1 1          | 3.709                 | 20.857               |   |
| 15/08/2020 10:35 | 54.1           | 2.659                 | 16.494               |   |

| D, T & V     | Date, Time & Exceedance Value Reported (Reported exceedance is the first running avg. value highlighted) |
|--------------|----------------------------------------------------------------------------------------------------------|
| <u>Max</u>   | Maximum of the Range                                                                                     |
| <u>Min</u>   | Minimum of the Range                                                                                     |
| Faded Values | These values are not used to calculate the number of reportable exceedances                              |
|              | Range of 5-minute measurements that contribute to the exceedance value reported                          |
| }            | Range of running average values during exceedance period                                                 |
| #            | Exceedance number                                                                                        |

Table E5.  $\mathrm{SO}_2$  Courtice Monitoring Station 1-Hour Running Average Exceedance Periods on August 30, 2020

| Date & Time      | Wind Direction | SO <sub>2</sub> 5-min | SO <sub>2</sub> 1-hr |          |
|------------------|----------------|-----------------------|----------------------|----------|
|                  |                | Avg.                  | Running Avg.         |          |
| EST              | ۰              | ppb                   | ppb                  |          |
| 30/08/2020 19:15 | 259.51         | 1.36                  | 0.664                |          |
| 30/08/2020 19:20 | 227 25         | 48.528                | 4.655                |          |
| 30/08/2020 19:25 | 227.35         | 28.774                | 7.004                |          |
| 30/08/2020 19:30 | 196.25         | 51.248                | 11.228               |          |
| 30/08/2020 19:35 | 160.25         | 53.613                | 15.646               |          |
| 30/08/2020 19:40 | 171.06         | 60.105                | 20.588               |          |
| 30/08/2020 19:45 | 171.00         | 61.183                | 25.635               |          |
| 30/08/2020 19:50 | 164.97         | 15.966                | 26.918               |          |
| 30/08/2020 19:55 | 104.87         | 9.74                  | 27.688               |          |
| 30/08/2020 20:00 | 171.00         | 53.658                | 32.116               |          |
| 30/08/2020 20:05 | 171.99         | 55.84                 | 36.721               |          |
| 30/08/2020 20:10 | 164.91         | 37.672                | 39.807               |          |
| 30/08/2020 20:15 | 104.91         | 22.865                | <u>41.599</u>        |          |
| 30/08/2020 20:20 | 150 22         | 7.722                 | 38.199               |          |
| 30/08/2020 20:25 | 130.25         | 3.583                 | 36.1                 |          |
| 30/08/2020 20:30 | 169.92         | 2.934                 | 32.073               |          |
| 30/08/2020 20:35 | 100.05         | 3.161                 | 27.869               |          |
| 30/08/2020 20:40 | 170 55         | 7.234                 | 23.463               | <b>_</b> |
| 30/08/2020 20:45 | 170.55         | 15.103                | 19.623               | 2        |
| 30/08/2020 20:50 | 164 50         | 5.938                 | 18.788               |          |
| 30/08/2020 20:55 | 104.59         | 3.618                 | 18.277               |          |
| 30/08/2020 21:00 | 171.09         | 2.766                 | 14.036               |          |
| 30/08/2020 21:05 | 171.00         | 1.881                 | 9.54                 |          |
| 30/08/2020 21:10 | 170 22         | 2.8                   | <u>6.634</u>         |          |
| 30/08/2020 21:15 | 170.55         | 5.754                 | 5.208                |          |
| 30/08/2020 21:20 | 172.2          | 37.024                | 7.65                 |          |
| 30/08/2020 21:25 | 172.5          | 31.844                | 10.005               |          |
| 30/08/2020 21:30 | 1/0.88         | 9.479                 | 10.55                |          |
| 30/08/2020 21:35 | 140.00         | 4.027                 | 10.622               |          |

| D, T & V     | Date, Time & Exceedance Value Reported (Reported exceedance is the first running avg. value highlighted) |
|--------------|----------------------------------------------------------------------------------------------------------|
| Max          | Maximum of the Range                                                                                     |
| <u>Min</u>   | Minimum of the Range                                                                                     |
| Faded Values | These values are not used to calculate the number of reportable exceedances                              |
|              | Range of 5-minute measurements that contribute to the exceedance value reported                          |
| }            | Range of running average values during exceedance period                                                 |
| #            | Exceedance number                                                                                        |

Table E6. SO<sub>2</sub> Rundle Monitoring Station 1-Hour Running Average Exceedance Periods on September 25, 2020

| Dato & Timo      | Wind Direction | SO <sub>2</sub> 5-min | SO <sub>2</sub> 1-hr |  |
|------------------|----------------|-----------------------|----------------------|--|
|                  | Wind Direction | Avg.                  | Running Avg.         |  |
| EST              | •              | ppb                   | ppb                  |  |
| 25/09/2020 12:00 | 134.97         | 16.461                | 16.548               |  |
| 25/09/2020 12:05 | 122.73         | 31.138                | 18.631               |  |
| 25/09/2020 12:10 | 130.88         | 26.727                | 19.923               |  |
| 25/09/2020 12:15 | 128.26         | 20.532                | 20.292               |  |
| 25/09/2020 12:20 | 132.56         | 35.926                | 21.833               |  |
| 25/09/2020 12:25 | 135.09         | 37.407                | 23.068               |  |
| 25/09/2020 12:30 | 133.06         | 35.924                | 24.511               |  |
| 25/09/2020 12:35 | 128.04         | 43.509                | 26.071               |  |
| 25/09/2020 12:40 | 126.41         | 42.485                | 27.684               |  |
| 25/09/2020 12:45 | 121.86         | 66.08                 | 32.144               |  |
| 25/09/2020 12:50 | 114.79         | 69.609                | 36.819               |  |
| 25/09/2020 12:55 | 126.56         | 47.978                | 39.481               |  |
| 25/09/2020 13:00 | 129.3          | 40.145                | <u>41.455</u>        |  |
| 25/09/2020 13:05 | 154.16         | 29.568                | 41.324               |  |
| 25/09/2020 13:10 | 165.53         | 17.376                | 40.545               |  |
| 25/09/2020 13:15 | 156.93         | 15.59                 | 40.133               |  |
| 25/09/2020 13:20 | 164.01         | 10.188                | 37.988               |  |
| 25/09/2020 13:25 | 132.29         | 7.73                  | 35.515               |  |
| 25/09/2020 13:30 | 156.83         | 8.065                 | 33.194               |  |
| 25/09/2020 13:35 | 147.35         | 5.275                 | 30.007               |  |
| 25/09/2020 13:40 | 146.48         | 4.896                 | 26.875               |  |
| 25/09/2020 13:45 | 152.59         | 5.352                 | 21.814               |  |
| 25/09/2020 13:50 | 151.15         | 3.588                 | 16.313               |  |
| 25/09/2020 13:55 | 156.08         | 3.684                 | <u>12.621</u>        |  |
| 25/09/2020 14:00 | 152.36         | 4.078                 | 9.616                |  |
| 25/09/2020 14:05 | 157.99         | 2.706                 | 7.377                |  |
| 25/09/2020 14:10 | 145.71         | 3.049                 | 6.183                |  |
| 25/09/2020 14:15 | 150.05         | 3.128                 | 5.145                |  |
| 25/09/2020 14:20 | 134.69         | 2.161                 | 4.476                |  |

|              | 1                                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------|
| D, T & V     | Date, Time & Exceedance Value Reported (Reported exceedance is the first running avg. value highlighted) |
| Max          | Maximum of the Range                                                                                     |
| Min          | Minimum of the Range                                                                                     |
| Faded Values | These values are not used to calculate the number of reportable exceedances                              |
|              | Range of 5-minute measurements that contribute to the exceedance value reported                          |
| }            | Range of running average values during exceedance period                                                 |
| #            | Exceedance number                                                                                        |







### Notification of Exceedence – Regulation 419/05

General Information and Instructions

### General Information

Information requested in this notification form is collected under the authority of the *Environmental Protection Act*, R.S.O. 1990 (EPA) and O. Reg. 419/05 and will be used to collect information relating to a measured or modelled air related exceedence as required by s.25(9), s.28(1) and s.30(3) of O. Reg. 419/05. The Ministry of the Environment (MOE) may also request additional information.

- Questions regarding completion and submission of this notification form should be directed to your local MOE District Office. A list of these
  District Offices (including fax numbers) is available on the Ministry of the Environment Internet site at
  <a href="http://www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist">http://www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist</a>. A copy of this form may be acquired through the MOE public web site
  <a href="http://www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist">(www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist</a>. A copy of this form may be acquired through the MOE public web site
  <a href="http://www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist">http://www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist</a>. A copy of this form may be acquired through the MOE public web site
  <a href="http://www.ene.gov.on.ca/envision/org/op.htm">www.ene.gov.on.ca/envision/org/op.htm#Reg/Dist</a>. A copy of this form may be acquired through the MOE public web site
  </a>
- 2. For notification under s.25(9) or 28(1), the completed notification form should be faxed, as soon as practicable, to the local Ministry of Environment (MOE) District Office which has jurisdiction over the area in which the facility is located.
- 3. For notification under s. 30, the completed notification form should be immediately faxed to the local Ministry of Environment (MOE) District Office which has jurisdiction over the area which the facility is located. If the exceedance is determined outside of the business hours of the District Office then the completed notification form should be faxed to the Spills Action Center (1-800-268-6061).
- 4. Information contained in this notification form may not be considered confidential and may be made available to the public upon request. Information may be claimed as confidential but will be subject to the *Freedom of Information and Protection of Privacy Act* (FOIPPA) and the *EBR*. If you do not claim confidentiality at the time of submitting the information, the Ministry of the Environment may make the information available to the public without further notice to you.

### **Instructions**

This form should be used to notify the MOE of a measured or modeled air related exceedence as required under O. Reg. 419/05. Failure to notify the MOE as required by regulation constitutes an offence under the O. Reg. 419/05 and the EPA.

The generic term "limits" in the context of this form means any numerical Point of Impingement Concentration limit set by the MOE including standards in O. Reg. 419/05 and guidelines provided by the MOE (Ministry POI Limits). For a comprehensive list of MOE POI Limits please refer to the publication titled "Summary of O. Reg. 419/05 Standards, Point of Impingement Guidelines, and Ambient Air Quality Criteria (AAQC's)" available on the Ministry of the Environment Internet site at <a href="http://www.ene.gov.on.ca/envision/gp/2424e01.htm">http://www.ene.gov.on.ca/envision/gp/2424e01.htm</a>. Note that contaminants that have guidelines limits or recommended levels for chemicals with no standard or guideline may be considered "contaminants not listed in any of Schedules 1, 2 and 3 and discharges of the contaminant may cause an adverse effect" as this language appears in O. Reg. 419/05.

This form may be used for notification of exceedences of more than one contaminant; Table 1 (or equvalent) should be completed for each contaminant. If this notification is made pursuant to s. 30 in combination with ss. 25(9) or 28(1) then this form must be submitted immediately in accordance with s.30.

### **Regulatory Authority**

- (1) A person who discharges or causes or permits the discharge of a contaminant shall, as soon as practicable, notify a provincial officer in writing if,
  - (a) the person uses an approved dispersion model to predict concentrations of the contaminant that result from the discharges and,
    - (i) the use of the model indicates that discharges of the contaminant may result in a contravention of section 18, 19 or 20, or
       (ii) the contaminant is not listed in any of Schedules 1, 2 and 3 and the use of the model indicates that discharges of the contaminant may cause an adverse effect;
  - (b) measurements of air samples indicate that discharges of the contaminant may result in a contravention of section 18, 19 or 20; or
  - (c) the contaminant is not listed in any of Schedules 1, 2 and 3 and measurements of air samples indicate that discharges of the contaminant may cause an adverse effect.
- 25. (9) A person who is required under subsection (8) to complete the update of a report not later than March 31 in a year shall, as soon as practicable after that date, notify a provincial officer in writing if the person has started to use an approved dispersion model with respect to a contaminant for the purpose of completing the update but has not yet complied with section 12, and,
  - (a) the use of the model indicates that discharges of the contaminant may result in a contravention of section 18, 19 or 20; or
  - (b) the contaminant is not listed in any of Schedules 1, 2 and 3 and the use of the model indicates that discharges of the contaminant may cause an adverse effect.
- 30. (1) A person who discharges or causes or permits the discharge of a contaminant listed in Schedule 6 into the air shall comply with subsections (3) and (4) if there is reason to believe, based on any relevant information, that discharges of the contaminant may result in the concentration of the contaminant exceeding the half hour upper risk threshold or other time period upper risk threshold set out for that contaminant in Schedule 6 at a point of impingement.
  - (2) Without limiting the generality of subsection (1), the reference in that subsection to relevant information includes relevant information from predictions of a dispersion model, including,
    - (a) an approved dispersion model or other dispersion model; or
    - (b) a dispersion model that is not used in accordance with this Regulation.
  - (3) If subsection (1) applies to a discharge, the person who discharged or caused or permitted the discharge of the contaminant shall immediately notify the Director in writing.

28.



Ministry of the Environment

1. Ministry of the Environment District Office Information

| Date Form Submitted (Faxed)                                                                                                         | Date Exceedednce Determin                                                                                       | ned                                                           |                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|--|--|--|
|                                                                                                                                     | Eax Number                                                                                                      |                                                               |                                                        |  |  |  |
| York-Durham District Office                                                                                                         | (905) 427-5602                                                                                                  | (905) 427-5602                                                |                                                        |  |  |  |
| Supporting information attached? Yes N                                                                                              | Supporting information attached? Yes No                                                                         |                                                               |                                                        |  |  |  |
| If yes, number of pages: 2                                                                                                          |                                                                                                                 |                                                               |                                                        |  |  |  |
| 2. Site Information                                                                                                                 |                                                                                                                 |                                                               |                                                        |  |  |  |
| Name of Person Making the Notification                                                                                              | Business Name                                                                                                   | Ocartas                                                       |                                                        |  |  |  |
| Lyndsay waller                                                                                                                      | Dumam York Energy                                                                                               | Centre                                                        |                                                        |  |  |  |
| North American Industry Classification System (NAICS) Code       Busi (a de         562210       Wa                                 | ness Activity Description<br>escription of the business endeavour, this may inclu<br>ste Treatment and Disposal | ude products sold, services p                                 | rovided, equipment used, etc.)                         |  |  |  |
| Site Name                                                                                                                           | MOE District Office                                                                                             |                                                               |                                                        |  |  |  |
| Courtice AQ Station And Rundle AQ Station                                                                                           | York-Durham District                                                                                            | t Office                                                      |                                                        |  |  |  |
| Address Information:                                                                                                                |                                                                                                                 | (int Identifier                                               | (i.e. suite av anadmant number)                        |  |  |  |
| 1835 Energy Drive                                                                                                                   | it information includes street number, name, type and direc                                                     | ction) Onit identifier                                        | (i.e. suite or apartment number)                       |  |  |  |
| Survey Address (used for a rural location specified for a subdivided tow                                                            | vnship, an unsubdivided township or unsurveyed te                                                               | erritory)                                                     |                                                        |  |  |  |
| Lot and Conc.: used to indicate location within a subdivided Pa<br>township and consists of a lot number and a concession number co | art and Reference: used to indicate location within a                                                           | an unsubdivided township or<br>ating the location within that | unsurveyed territory, and plan Attach copy of the plan |  |  |  |
| Lot Conc.                                                                                                                           | Part                                                                                                            | Refe                                                          | erence Plan                                            |  |  |  |
|                                                                                                                                     |                                                                                                                 |                                                               |                                                        |  |  |  |
| Non Address Information (includes any additional information to clarify                                                             | applicants' physical location)                                                                                  |                                                               |                                                        |  |  |  |
| Municipality/Uproganized Township County/Dis                                                                                        | strict                                                                                                          | Postal Code                                                   |                                                        |  |  |  |
| Courtice York-Du                                                                                                                    | urham                                                                                                           | L1E2R2                                                        |                                                        |  |  |  |
|                                                                                                                                     | Geo Reference                                                                                                   |                                                               |                                                        |  |  |  |
| Map Datum Zone Accuracy E                                                                                                           | Estimate Geo Referencing Method                                                                                 | UTM Easting                                                   | UTM Northing                                           |  |  |  |
| Certificate of Approval Number (s) – attach a separate list if more spac                                                            | e is required                                                                                                   |                                                               |                                                        |  |  |  |
| 7306-8FDKNX                                                                                                                         |                                                                                                                 |                                                               |                                                        |  |  |  |
| 3 Type of Notification: Limit Exceedence - Table 1 or Table                                                                         | e 2 should be completed and submitted with                                                                      | this notification of exceed                                   | lence                                                  |  |  |  |
| This is a potification under Section $28(1)$ – Notice to Provincial (                                                               | Officer as a result of modelling or measurements re                                                             | elating to an exceedence of:                                  | select all that apply)                                 |  |  |  |
|                                                                                                                                     |                                                                                                                 |                                                               |                                                        |  |  |  |
|                                                                                                                                     |                                                                                                                 |                                                               |                                                        |  |  |  |
| Other Limit (explain):                                                                                                              |                                                                                                                 |                                                               |                                                        |  |  |  |
| This is a notification under Section 25 (9) – Notice to Provincial                                                                  | Officer as a result an update of an Emission Summ                                                               | nary and Dispersion Modelling                                 | g Report (select all that apply)                       |  |  |  |
| Schedule 1 Schedule 2 Schedule                                                                                                      | 3 POI Guideline Ambient Air                                                                                     | Quality Criteria                                              |                                                        |  |  |  |
| Other Limit (explain):                                                                                                              |                                                                                                                 |                                                               |                                                        |  |  |  |
| Date that Refinement is anticipated to be complete (dd/mm/yyyy                                                                      | /):                                                                                                             |                                                               |                                                        |  |  |  |
| This is a notification under Section 30 (3) – Notice to the Directo                                                                 | or as a result of an exceedence of Upper Risk Thre                                                              | sholds (Schedule 6)                                           |                                                        |  |  |  |
| Yes No                                                                                                                              |                                                                                                                 |                                                               |                                                        |  |  |  |
| 4. Follow-Up Action                                                                                                                 |                                                                                                                 |                                                               |                                                        |  |  |  |
| Section 28 Notifications                                                                                                            |                                                                                                                 |                                                               |                                                        |  |  |  |
| Will an Abatement Plan be submitted to the Ministry within 30 days of this notice as per s.29?                                      |                                                                                                                 |                                                               |                                                        |  |  |  |
| Yes Type of Previously Approved Abatement Plan Date Approved under s.29 of O. Reg. 419/05 (dd/mm/yyyy)                              |                                                                                                                 |                                                               |                                                        |  |  |  |
| Section 30 (3) Notifications for LIRT exceedence                                                                                    |                                                                                                                 |                                                               |                                                        |  |  |  |
| Has an Emission Summary and Dispersion Modelling (ESDM) Report h                                                                    | been prepared in accordance with s 30(4) and subr                                                               | nitted to the Ministry?                                       |                                                        |  |  |  |
|                                                                                                                                     |                                                                                                                 |                                                               |                                                        |  |  |  |
| Line If No. what is the anticipated submission date for the ESDM* (dd/mm/waw)?                                                      |                                                                                                                 |                                                               |                                                        |  |  |  |
|                                                                                                                                     |                                                                                                                 |                                                               |                                                        |  |  |  |
|                                                                                                                                     | * Note: The ES                                                                                                  | SDM must be submitted within                                  | n three months of the discharge                        |  |  |  |

| 5.  | Model Based Assessment - | please com | plete this section | if notifying | of a modelled exceedence | (complete Table 1) |
|-----|--------------------------|------------|--------------------|--------------|--------------------------|--------------------|
| ••• |                          |            |                    |              |                          | 100.000 . 0.0.0    |

| Was an ESDM Report prepared in accordance with s.26 O. Reg. 419/05?                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yes No                                                                                                                                                                         |
| If yes, was the ESDM Report prepared to fulfill (select all that apply):                                                                                                       |
| s.22 of O. Reg. 419/05 - Application for Certificate of Approval under section 9 of the Environmental Protection Act                                                           |
| s.23 of O. Reg. 419/05 - Requirement for Schedule 4 or 5 sector facilities                                                                                                     |
| s.24 of O. Reg. 419/05 - Notice issued by Director                                                                                                                             |
| s.25 of O. Reg. 419/05 - Requirement for updating ESDM Report                                                                                                                  |
| s.30(4) of O. Reg 419/05 – Required as result of URT exceedence                                                                                                                |
| s.32(13) of O. Reg. 419/05 – Required as part of a Request for Alternative Standard                                                                                            |
| Other (please specify):                                                                                                                                                        |
| Was the approved dispersion model refined as required by s.12 O. Reg. 419/05 (i.e. operating conditions, emission rates)?                                                      |
| Yes No                                                                                                                                                                         |
| Have you modelled for additional receptor locations other than the maximum POI? (please include figure showing maximum POI location)                                           |
| Yes No                                                                                                                                                                         |
| If Yes, specify additional locations (i.e., land use) at which the exceedence may occur (select all that apply – please include figure showing additional modelled locations): |
| Health Care Seniors Residence / Child Care Facility Educational Facility Dwelling Unknown                                                                                      |
| Location Specified by<br>The Director (explain):     Other Location (explain):                                                                                                 |

### 6. Measurement Based Assessment – please complete this section if notifying of a measured exceedence (Complete Table 2 or equivalent)

|                                                                | complete this section in notifying of a measured ex |                                 |  |  |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Type of Monitor / Measurement Type                             | Date of Exceedence (dd/mm/yyyy)                     | Duration of Exceedence          |  |  |  |  |  |  |
| PS-1 Air Samplers                                              | 24/09/2020                                          | 2 Event (24 hours)              |  |  |  |  |  |  |
| Is the monitoring approved by the Ministry of the Environment? |                                                     |                                 |  |  |  |  |  |  |
| X Yes                                                          | 7306-8FDKNX                                         |                                 |  |  |  |  |  |  |
| No                                                             |                                                     |                                 |  |  |  |  |  |  |
| Monitoring Reference Number: (if available)                    |                                                     |                                 |  |  |  |  |  |  |
|                                                                |                                                     |                                 |  |  |  |  |  |  |
| Specify the location (i.e., land use) at which the exceedence  | did occur (select all that apply):                  |                                 |  |  |  |  |  |  |
| Health Care Seniors Residence /<br>Long Term Care Facility     | Child Care Facility Educational Facility            | Dwelling Unknown                |  |  |  |  |  |  |
| Location Specified by<br>The Director (explain):               | Other Location (explain):                           | Courtice and Rundle AQ Stations |  |  |  |  |  |  |

### 7. Statement of Company Official

| 7. Statement of Company Official                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                             |                          |                          |                                                 |     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|--------------------------|--------------------------|-------------------------------------------------|-----|--|
| I, the undersigned hereby declare that, to the best of my knowledge:                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                          |                          |                                                 |     |  |
| <ul> <li>The information contained herein and the information submitted is complete and accurate in every way and I am aware of the penalties against providing false information as per s.184(2) of the <i>Environmental Protection Act</i>.</li> <li>I have been authorized to act on behalf of the company identified in this form for the purpose of providing this notification of exceedence under O.Reg 419/05 to the Ministry of the Environment</li> </ul> |                         |                             |                          |                          |                                                 |     |  |
| my local Ministry District Office and I                                                                                                                                                                                                                                                                                                                                                                                                                             | have included all nece  | essary information required | d by O. Reg. 419/05 ar   | nd identified on this fo | orm.                                            |     |  |
| Name of Signing Authority (please print)                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 1                           | Title                    |                          |                                                 |     |  |
| Lyndsay Waller                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                             | Operations Technician    |                          |                                                 |     |  |
| Civic Address (address that has civic num                                                                                                                                                                                                                                                                                                                                                                                                                           | bering and street infor | mation includes street nur  | nber, name, type and     | direction)               | Unit Identifier (i.e. suite or apartment number | er) |  |
| 1835 Energy Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                             |                          |                          |                                                 |     |  |
| Delivery Designator:<br>If signing authority mailing address is a Rural Route, Suburban Service, Mobile Route or General Delivery (i.e., RR#3)                                                                                                                                                                                                                                                                                                                      |                         |                             |                          |                          |                                                 |     |  |
| Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Postal Station          |                             | Province/State           | Country                  | Postal Code                                     |     |  |
| Courtice                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                             | Ontario                  | Canada                   | L1E 2R2                                         |     |  |
| Telephone Number (including area code & extension)       Fax Number (including area code)       E-mail Address                                                                                                                                                                                                                                                                                                                                                      |                         |                             |                          |                          |                                                 |     |  |
| 905-404-0888 x 4107                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                             | lyndsay.waller@durham.ca |                          |                                                 |     |  |
| Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                             | Date (dd/mm/yyyy)        | ·                        |                                                 |     |  |

### Table 1 - Information About Modelled Air Limit Exceedence – Contaminant Information

| Location of Maximum POI Concentration (e.g. UTM, street a | Land Use at Maximum Point of Impingement (if known) |  |  |  |  |
|-----------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
|                                                           |                                                     |  |  |  |  |
| 1                                                         |                                                     |  |  |  |  |
| 3                                                         |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
| 5                                                         |                                                     |  |  |  |  |
| 7                                                         |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
| 9                                                         |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
| 13                                                        |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
| 17                                                        |                                                     |  |  |  |  |
|                                                           |                                                     |  |  |  |  |
| 19                                                        |                                                     |  |  |  |  |
| 21                                                        |                                                     |  |  |  |  |
| 22                                                        |                                                     |  |  |  |  |

Notes:

(a) Proper Chemical Name should be given (Abbreviations, acronyms, numeric codes, trade names and mixtures NOT ACCEPTABLE).

(b) CAS Number : Chemical Abstracts Services Number (UNIQUE Identifier for a chemical)

(c) POI Concentration : Point of Impingement Concentration

## Table 2 - Information About Measured Air Limit Exceedence – Contaminant Information

| Location of Monitor (Describe) |                |         |     | Date (dd/mm/yyyy)         Time         Si           24/09/2020         N/A         2 |          | Sampl  | Sampling Period Land Use a |         | and Use at I | at Monitor                            |      |      |
|--------------------------------|----------------|---------|-----|--------------------------------------------------------------------------------------|----------|--------|----------------------------|---------|--------------|---------------------------------------|------|------|
|                                |                |         |     | 24/09/2020 N/A 24                                                                    |          | 24-110 | 24-Hours Oll-si            |         | JI-Sile al   | at waste water facility/Offsite North |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 1                              | Benzo(a)Pyrene | 50-32-8 | PUF |                                                                                      | 0.000055 | 24     | C                          | ).00005 | Health       |                                       | AAQS | 110% |
|                                | E              |         | F   |                                                                                      | C        | 2      | C                          |         | ł            |                                       | 1    | 1    |
| 3                              |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 5                              |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 7                              |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 9                              |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 11                             |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 13                             |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 15                             |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 17                             |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
| 19                             |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |
|                                |                |         |     |                                                                                      |          |        |                            |         |              |                                       |      |      |

\* For additional measurement locations / sampling times, please included additional tables \*\* If you are reporting more than one exceedence, include the time of the exceedence in the contaminant column

Notes:

(a) Proper Chemical Name should be given (Abbreviations, acronyms, numeric codes, trade names and mixtures NOT ACCEPTABLE).

(b) CAS Number : Chemical Abstracts Services Number (UNIQUE Identifier for a chemical)

(c) POI Concentration : Point of Impingement Concentration



# MEMO





600 Southgate Drive Guelph ON Canada N1G 4P6

## MEMORANDUM

| DATE: | 2020-11-02                                            | RWDI Reference No.: 1803743          |  |  |  |  |  |
|-------|-------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| то:   | Lyndsay Waller                                        | EMAIL: Lyndsay.Waller@Durham.ca      |  |  |  |  |  |
| CC:   | Andrew Evans                                          | EMAIL: <u>Andrew.Evans@Durham.ca</u> |  |  |  |  |  |
| CC:   | Gioseph Anello                                        | EMAIL: Gioseph.Anello@Durham.ca      |  |  |  |  |  |
| FROM: | John DeYoe                                            | EMAIL: jd@rwdi.com                   |  |  |  |  |  |
| RE:   | Exceedance Report – Benzo(a)Pyrene September 24, 2020 |                                      |  |  |  |  |  |

Region of Durham, DYEC

On October 23, 2020 the results from ALS Environmental were received regarding the PAH results from the September 24, 2020 sampling event. On October 29, 2020, the results were entered and assessed, and it was found that there were two (2) measured Benzo(a)Pyrene concentrations in excess of the 24-hour AAQC on the September 24<sup>th</sup> sampling date. Attached is the Exceedance Form PIBS 5354e for your reference. Below is a summary of the event.

### September 24, 2020

On Thursday, September 24, 2020, there were two exceedances of the Benzo(a)Pyrene 24-hour AAQC, which occurred at the Courtice and Rundle Road Stations measured at the onsite PUF PS-1 samplers. Attached is a figure depicting the wind rose (indicating the wind speed and direction during the sampling day), and the location of the sampling station relative to the DYEC.

The following summarizes the BaP concentrations and onsite conditions during the September 24<sup>th</sup> sampling date:

- 1. The guideline concentration for BaP is 0.00005 ug/m<sup>3</sup>. The measured concentration at the Courtice and Rundle Road samplers was 0.000055 µg/m<sup>3</sup> and 0.000061 µg/m<sup>3</sup> respectively. During the sampling day the wind was recorded predominantly from the NE to SSW as recorded at the Courtice WPCP Meteorological Tower. Wind speeds at Courtice tower ranged from 2.86 km/h to 8.44 km/h. During the sampling day the wind was recorded predominantly from the NE and S as recorded at the Rundle Road Meteorological Tower. Wind speeds at Rundle tower ranged from 0.24 km/h to 6.07 km/h.
- 2. According to the Courtice meteorological data, the Courtice Station was downwind of the DYEC part of the time during the September 24<sup>th</sup> sampling period. According to the Courtice

rwdi.com



Lyndsay Waller Durham York Energy Centre RWDI#1803743 NOVEMBER 2, 2020

meteorological data, the winds were coming from the NE-SSW and it is likely that the measured BaP exceedances may be attributed to industrial sources along the lakeshore with a possible contribution from DYEC in the NE-ENE quadrants.

3. According to the Rundle meteorological data, the Rundle Road Station was upwind of the DYEC during the sampling period. Since the winds were predominantly coming from the Northeast and South, it is likely that the measured BaP exceedances may be attributed to sources other than the Energy Centre operations.

At the Courtice Station, the NO<sub>2</sub> hourly values were less than 11.75% of the criteria for the same period. The  $PM_{2.5}$  24-hour average value was 16.9 micrograms per cubic meter at the Courtice Station. At the Rundle Road Station, the NO<sub>2</sub> hourly values were less than 4.55% of the criteria for the same period. The  $PM_{2.5}$  24-hour average value was 12.6 micrograms per cubic meter at the Rundle Road Station.

We have also attached the data files for the sample in question to aid with the review.

Respectfully submitted by:

RWDI AIR Inc.

John DeYoe, B.A. Senior Consultant / Principal

JD

Attach.



# FIGURE






## SUPPORTING DATA





1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

## **Certificate of Analysis**

ALS Project Contact: Claire Kocharakkal ALS Project ID: ALS WO#: L2510222 Date of Report 23-Oct-20 Date of Sample Receipt 30-Sep-20

23601

Client Name: Client Address: Client Contact: Client Project ID: DYEC

RWDI Air Inc. 600 Southgate Drive Guelph, ON N1G 4P6 Canada John DeYoe

#### COMMENTS:

PAH by CARB method 429 (LR option)- Isotope dilution

Sample data as provided are not blank corrected.

There was significant and uncharacteristically high laboratory and/or media background with the analysis of this batch of samples. The benzo(a)pyrene values as reported are slightly above the MECP 24 hour criterion. With media blank correction of these data, the benzo(a)pyrene values are below the limits.

LCS recoveries are not blank corrected. High LCS recoveries for fluorene, acenaphthene and phenanthrene are attributable to the high media background.

| Loursek) |
|----------|
|          |

Certified by:

Claire Kocharakkal Account Manager

Results in this certificate relate only to the samples as submitted to the laboratory.

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

|                              |                         |         |                         | AL   | S Life Science          | es     |                      |     |                              |     |
|------------------------------|-------------------------|---------|-------------------------|------|-------------------------|--------|----------------------|-----|------------------------------|-----|
|                              |                         |         | Samp                    | le A | nalysis Summary         | Rep    | ort                  |     |                              |     |
| Sample Name                  | Method Media<br>Blank   |         | Method Reagent<br>Blank |      | COURTICE-PAH-<br>SEP24  |        | RUNDLE-PAH-<br>SEP24 |     | Laboratory<br>Control Sample |     |
| ALS Sample ID                | WG3415590-1             |         | WG3415590-4             |      | L2510222-1              |        | L2510222-2           |     | WG3415590-2                  |     |
| Sample Size                  | 1                       |         | 1                       |      | 1                       |        | 1                    |     | 1                            |     |
| Sample units                 | Sample                  |         | Sample                  |      | Sample                  |        | Sample               |     | LCS                          |     |
| Moisture Content             | n/a                     |         | n/a                     |      | n/a                     |        | n/a                  |     | n/a                          |     |
| Matrix<br>Sampling Date      | MEDIA<br>D/a            |         | REAGEN1                 |      | 24-Sep. 20              |        | Put<br>24-Sep-20     |     | UC<br>p/a                    |     |
| Extraction Date              | 1-Oct-20                |         | 1-Oct-20                |      | 1-Oct-20                |        | 1-Oct-20             |     | 1-Oct-20                     |     |
| arget Analytes               | ng                      |         | ng                      |      | ng                      |        | ng                   |     | %                            |     |
| laphthalene                  | 54.2                    |         | 45.6                    | м    | 16500                   |        | 25500                |     | 109.4                        |     |
| -Methylnaphthalene           | 95.5                    |         | 36.6                    |      | 3240                    |        | 6250                 |     | 131.0                        |     |
| -Methylnaphthalene           | 72.4                    |         | 24.9                    |      | 2450                    |        | 4500                 |     | 144.8                        |     |
| cenaphthylene                | 3.81                    | M,R     | 4.78                    | M,R  | 43.6                    | М      | 35.2                 | М   | 96.7                         |     |
| cenaphthene                  | 211                     |         | 13.0                    |      | 1040                    |        | 2710                 |     | 253.3                        |     |
| luorene                      | 126                     |         | 11.7                    |      | 662                     |        | 1450                 |     | 158.7                        |     |
| henanthrene                  | 319                     |         | 34.1                    |      | 913                     |        | 2300                 |     | 236.5                        |     |
| Anthracene                   | 15.0                    |         | 7.23                    |      | 62.8                    |        | 122                  |     | 95.2                         |     |
| luoranthene                  | 4.76                    |         | 1.48                    |      | 117                     |        | 316                  |     | 88.5                         |     |
| yrene                        | 3.85                    |         | 1.31                    | R    | 158                     |        | 145                  |     | 88.9                         |     |
| Benzo(a)Anthracene           | 0.790                   | M,R     | 0.860                   | M,R  | 11.1                    |        | 7.60                 | R   | 83.8                         |     |
| Chrysene                     | 0.780                   | м       | 2.14                    | М    | 45.6                    | R      | 33.6                 | R   | 99.1                         |     |
| Benzo(b)Fluoranthene         | 14.7                    | M,R     | 1.17                    | R    | 26.9                    |        | 20.7                 | M,R | 83.7                         |     |
| Benzo(k)Fluoranthene         | <0.20                   | U       | 2.50                    | М    | 22.6                    | М      | 14.2                 | M,R | 105.2                        |     |
| Benzo(e)Pyrene               | 1.55                    | R       | 0.820                   | М    | 16.8                    |        | 10.9                 | R   | 85.0                         |     |
| Benzo(a)Pyrene               | 3.68                    | M,R     | 0.680                   | M,R  | 16.6                    |        | 18.6                 | M,R | 100.7                        |     |
| Perylene                     | 5.46                    | М       | 0.680                   | M,R  | 1.58                    |        | 0.710                | M,R | 107.3                        |     |
| ndeno(1,2,3-cd)Pyrene        | 24.1                    | R       | 1.52                    | R    | 14.2                    | М      | 9.75                 | M,R | 95.2                         |     |
| Dibenzo(a,h)Anthracene       | 0.610                   | M,R     | 1.59                    | М    | 2.49                    | M,R    | 2.05                 | M,R | 87.4                         | M   |
| lenzo(g,h,i)Perylene         | <0.20                   | U       | 0.740                   | M,R  | 16.0                    | м      | 12.8                 |     | 98.9                         | М   |
| dditional Analytes           |                         |         |                         |      |                         |        |                      |     |                              |     |
| etralin                      | 4.10                    | М       | < 0.20                  | U    | 1260                    |        | 3930                 |     | NS                           |     |
| liphenyl                     | 71.7                    |         | 42.0                    |      | 1010                    |        | 1380                 |     | NS                           |     |
| -Terphenyl                   | 1.35                    | м       | 1.48                    |      | 10.4                    |        | 12.1                 | М   | NS                           |     |
| lenzo(a)fluorene             | <0.20                   | U       | 1.15                    |      | 17.4                    | M      | 15.2                 | M   | NS                           |     |
| enzo(b)fluorene              | <0.20                   | U       | 1.12                    |      | 21.5                    | R      | 22.2                 | R   | NS                           |     |
| ield Sampling Standards      | % Rec                   |         | % Rec                   |      | % Rec                   |        | % Rec                |     | % Rec                        |     |
| -Methylnaphthalene-D10       | NS                      |         | NS                      |      | 89.8                    |        | 86.1                 |     | NS                           |     |
| Iuorene D10                  | NS                      |         | NS                      |      | 96.0                    | .,     | 94.2                 |     | NS                           |     |
| erpnenyl D14(Surr.)          | NS                      |         | NS                      |      | 91.5                    | М      | 76.1                 | м   | NS                           |     |
| xtraction Standards          | % Rec                   | _       | % Rec                   |      | % Rec                   | _      | % Rec                | _   | % Rec                        |     |
| laphthalene D8               | 32.2                    | R       | 23.1                    | M,R  | 17.4                    | R      | 23.5                 | R   | 46.1                         | м   |
| -weinyinaphthalene-D10       | 55.7                    |         | 58.4                    |      | 38.4                    |        | 57.8                 |     | /0.9                         |     |
| benaphthylene D8             | 56.6                    |         | 24.2                    |      | 45.1                    |        | 43.3                 |     | /1.6                         |     |
| nthracene-D10                | 08.0<br>65.1            |         | 34.2                    |      | 50.7<br>7/ 0            |        | 04.7<br>77 0         |     | 79.1                         |     |
| luoranthene D10              | 65.9                    |         | 65.1                    |      | 74.9                    |        | 73.2                 |     | 82.0                         |     |
| lenz(a)Anthracene-D12        | 77.0                    | R       | 66.1                    |      | 87.3                    |        | 83.5                 | R   | 96.2                         |     |
| hrysene D12                  | 57.5                    |         | 60.7                    |      | 70.4                    |        | 73.3                 |     | 76.0                         |     |
| -<br>enzo(b)Fluoranthene-D12 | 99.1                    | R       | 102.5                   |      | 110.8                   |        | 113.7                | M,R | 125.1                        | M,R |
| enzo(k)Fluoranthene-D12      | 61.0                    | R       | 63.9                    |      | 73.5                    | R      | 108.0                | M,R | 79.9                         | R   |
| enzo(a)Pyrene D12            | 71.3                    |         | 74.4                    |      | 81.8                    |        | 52.9                 | R   | 94.0                         | м   |
| erylene D12                  | 79.2                    |         | 70.5                    |      | 94.4                    |        | 99.0                 |     | 109.7                        |     |
| ndeno(1,2,3,cd)Pyrene-D12    | 117.8                   |         | 113.9                   | М    | 144.1                   |        | 138.2                |     | 165.6                        |     |
| Dibenz(a,h)Anthracene-D14    | 101.5                   | м       | 100.3                   | М    | 115.4                   | м      | 93.0                 |     | 136.9                        | M   |
| Benzo(g,h,i)Perylene D12     | 87.3                    | М       | 94.4                    | М    | 104.3                   | М      | 88.7                 |     | 121.5                        | M   |
| U                            | Indicates that this co  | mpound  | was not detected al     | bove | the LOD.                |        |                      |     |                              |     |
| М                            | Indicates that a peak   | has bee | en manually integrat    | ed.  |                         |        |                      |     |                              |     |
|                              |                         |         |                         |      |                         |        |                      |     |                              |     |
| R                            | Indicates that the ion  | abunda  | nce ratio for this cor  | mpou | nd did not meet the acc | eptanc | e criterion.         |     |                              |     |
| NS                           | indicates that this sta | maard v | vas not spiked to sar   | nple |                         |        |                      |     |                              |     |

| ALS Life Sciences Laboratory Method Blank Analysis Report                                                            |                                                                     |                                            |                                                  |                                |                          |                              |              |                   |                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------|------------------------------|--------------|-------------------|--------------------------|--|--|--|--|
|                                                                                                                      |                                                                     |                                            |                                                  | Labo                           | ratory                   | Method Blank A               | nalysis R    | eport             |                          |  |  |  |  |
| Sample Name<br>ALS Sample ID<br>Analysis Method<br>Analysis Type<br>Sample Matrix<br>Sample Size<br>Percent Moisture | Method Bla<br>WG3415590<br>PAH by CAR<br>blank<br>MEDIA<br>1<br>n/a | ank<br>D-1<br>B 429<br>Sample              |                                                  |                                |                          | Sampling<br>Extraction       | Date<br>Date | n/a<br>1-Oct-20   | Approved:<br>T.Patterson |  |  |  |  |
| Split Ratio                                                                                                          | 1                                                                   |                                            |                                                  |                                |                          | Workgrou                     | )            | WG3415590         | 22-Oct-2020              |  |  |  |  |
| Run Information                                                                                                      |                                                                     | Rui                                        | n 1                                              |                                |                          |                              |              |                   |                          |  |  |  |  |
| Filename<br>Run Date<br>Final Volume<br>Dilution Factor<br>Analysis Units<br>Instrument<br>Column                    |                                                                     | 201<br>10/<br>0.1<br>1<br>ng<br>MSI<br>HP5 | 015A21.D<br>16/2020 3:<br>mL<br>D-5<br>5MS USO17 | 14<br>9454H                    |                          |                              |              |                   |                          |  |  |  |  |
| Target Analytes                                                                                                      |                                                                     | r                                          | Ret. Co<br>lime                                  | ncentration<br>ng              | Flags                    |                              |              |                   |                          |  |  |  |  |
| Naphthalene                                                                                                          |                                                                     |                                            | 2.92                                             | 54.2                           |                          |                              |              |                   |                          |  |  |  |  |
| 2-Methvlnaphthalene                                                                                                  | •                                                                   |                                            | 3.55                                             | 95.5                           |                          |                              |              |                   |                          |  |  |  |  |
| 1-Methylnaphthalene                                                                                                  | •                                                                   |                                            | 3.68                                             | 72.4                           |                          |                              |              |                   |                          |  |  |  |  |
| Acenaphthylene                                                                                                       |                                                                     |                                            | 4.74                                             | 3.81 M                         | R                        |                              |              |                   |                          |  |  |  |  |
| Acenaphthene                                                                                                         |                                                                     |                                            | 5.05                                             | 211                            |                          |                              |              |                   |                          |  |  |  |  |
| Fluorene                                                                                                             |                                                                     |                                            | 5.99                                             | 126                            |                          |                              |              |                   |                          |  |  |  |  |
| Phenanthrene                                                                                                         |                                                                     |                                            | 8.21                                             | 319                            |                          |                              |              |                   |                          |  |  |  |  |
| Anthracene                                                                                                           |                                                                     |                                            | 8.32                                             | 15.0                           |                          |                              |              |                   |                          |  |  |  |  |
| Fluoranthene                                                                                                         |                                                                     | 1                                          | 1.61                                             | 4.76                           |                          |                              |              |                   |                          |  |  |  |  |
| Pyrene                                                                                                               |                                                                     | 1                                          | 2.26                                             | 3.85                           |                          |                              |              |                   |                          |  |  |  |  |
| Benzo(a)Anthracene                                                                                                   |                                                                     | 1                                          | 6.16                                             | 0.790 N                        | I R                      |                              |              |                   |                          |  |  |  |  |
| Chrysene                                                                                                             |                                                                     | 1                                          | 6.29                                             | 0.780 M                        |                          |                              |              |                   |                          |  |  |  |  |
| Benzo(b)Fluoranthen                                                                                                  | e                                                                   | 1                                          | 9.49                                             | 14.7 M                         | I R                      |                              |              |                   |                          |  |  |  |  |
| Benzo(k)Fluoranthen                                                                                                  | e                                                                   | No                                         | otFnd                                            | < 0.20                         | U                        |                              |              |                   |                          |  |  |  |  |
| Benzo(e)Pyrene                                                                                                       |                                                                     | 2                                          | 20.27                                            | 1.55                           | ĸ                        |                              |              |                   |                          |  |  |  |  |
| Benzo(a)Pyrene                                                                                                       |                                                                     | 2                                          | 0.44                                             | 3.08 M                         |                          |                              |              |                   |                          |  |  |  |  |
| Indeno(1,2,3-cd)Pyre                                                                                                 | ano                                                                 | 2                                          | 0.70                                             | 24.1                           | D                        |                              |              |                   |                          |  |  |  |  |
| Dibenzo(a h)Anthrace                                                                                                 | ene                                                                 | 2                                          | 4.13                                             | 0.610 M                        |                          |                              |              |                   |                          |  |  |  |  |
| Benzo(a,h,i)Pervlene                                                                                                 | chic                                                                | 2                                          | 5.05                                             | <0.20                          | U                        |                              |              |                   |                          |  |  |  |  |
| Additional Analytes                                                                                                  | S                                                                   |                                            |                                                  |                                |                          |                              |              |                   |                          |  |  |  |  |
| Tetralin                                                                                                             |                                                                     |                                            | 2 79                                             | 4 10 M                         |                          |                              |              |                   |                          |  |  |  |  |
| Biphenvl                                                                                                             |                                                                     |                                            | 4.12                                             | 71.7                           |                          |                              |              |                   |                          |  |  |  |  |
| o-Terphenyl                                                                                                          |                                                                     |                                            | 9.50                                             | 1.35 M                         |                          |                              |              |                   |                          |  |  |  |  |
| Benzo(a)fluorene                                                                                                     |                                                                     | No                                         | otFnd                                            | <0.20                          | U                        |                              |              |                   |                          |  |  |  |  |
| Benzo(b)fluorene                                                                                                     |                                                                     | No                                         | otFnd                                            | <0.20                          | U                        |                              |              |                   |                          |  |  |  |  |
| Field Sampling Star                                                                                                  | ndards                                                              | ng spiked                                  | d                                                | % Rec                          |                          |                              |              |                   |                          |  |  |  |  |
| 1-Methylnaphthalene                                                                                                  | -D10                                                                |                                            |                                                  | NS                             |                          |                              |              |                   |                          |  |  |  |  |
| Fluorene D10                                                                                                         |                                                                     |                                            |                                                  | NS                             |                          |                              |              |                   |                          |  |  |  |  |
| Terphenyl D14(Surr.)                                                                                                 | )                                                                   |                                            |                                                  | NS                             |                          |                              |              |                   |                          |  |  |  |  |
| Extraction Standard                                                                                                  | ds                                                                  |                                            |                                                  | % Rec                          |                          | Limits                       |              |                   |                          |  |  |  |  |
| Naphthalene D8                                                                                                       |                                                                     | 200                                        | 2.91                                             | 32.2                           | R                        | 50-150                       |              |                   |                          |  |  |  |  |
| 2-Methylnaphthalene                                                                                                  | -D10                                                                | 200                                        | 3.52                                             | 55.7                           |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Acenaphthylene D8                                                                                                    |                                                                     | 200                                        | 4.72                                             | 56.6                           |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Anthracona D10                                                                                                       |                                                                     | 200                                        | 0.10                                             | 58.5<br>4E 1                   |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Fluoranthene D10                                                                                                     |                                                                     | 200<br>200 1                               | 0.20<br>1.56                                     | 00. I<br>45 0                  |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Benz(a)Anthracene-D                                                                                                  | 012                                                                 | 200 1                                      | 6.10                                             | 77.0                           | R                        | 50-150                       |              |                   |                          |  |  |  |  |
| Chrysene D12                                                                                                         |                                                                     | 200 1                                      | 6.22                                             | 57.5                           |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Benzo(b)Fluoranthen                                                                                                  | e-D12                                                               | 200 1                                      | 9.45                                             | 99.1                           | R                        | 50-150                       |              |                   |                          |  |  |  |  |
| Benzo(k)Fluoranthen                                                                                                  | e-D12                                                               | 200 1                                      | 9.53                                             | 61.0                           | R                        | 50-150                       |              |                   |                          |  |  |  |  |
| Benzo(a)Pyrene D12                                                                                                   |                                                                     | 200 2                                      | 0.32                                             | 71.3                           |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Perylene D12                                                                                                         |                                                                     | 200 2                                      | 0.55                                             | 79.2                           |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Indeno(1,2,3,cd)Pyre                                                                                                 | ene-D12                                                             | 200 2                                      | 3.99                                             | 117.8                          |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Dibenz(a,h)Anthracer                                                                                                 | ne-D14                                                              | 200 2                                      | 4.15                                             | 101.5 N                        |                          | 50-150                       |              |                   |                          |  |  |  |  |
| Benzo(g,h,i)Perylene                                                                                                 | D12                                                                 | 200 2                                      | 4.96                                             | 87.3 N                         |                          | 50-150                       |              |                   |                          |  |  |  |  |
| N                                                                                                                    | 1                                                                   | Indicates<br>Indicates                     | that a peak<br>that this co                      | has been manu<br>mpound was no | ually integ<br>t detecte | grated.<br>ed above the MDL. |              |                   |                          |  |  |  |  |
|                                                                                                                      |                                                                     |                                            |                                                  |                                |                          |                              |              |                   |                          |  |  |  |  |
| R                                                                                                                    | K                                                                   | Indicates                                  | that the ion                                     | abundance rat                  | to for this              | s compound did not me        | et the accep | otance criterion. |                          |  |  |  |  |
| NS                                                                                                                   | 5                                                                   | Indicates                                  | that this sta                                    | andard was not                 | spiked to                | sample                       |              |                   |                          |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                            | AL                                                 | S Life Science                                                                                                                                                                   | S                    |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             | Labo                                                                                                                                                                       | ratory                                             | Method Blank Analysi                                                                                                                                                             | s Report             |                                                |
| Sample NameMeALS Sample IDWGAnalysis MethodPAHAnalysis TypeblaiSample MatrixREASample Size1Percent Moisturen/a                                                                                                                                                                                                                                                                                                          | t <b>hod Blank</b><br>33415590-4<br>H by CARB 429<br>nk<br>AGENT<br>Sample                                                                                                  |                                                                                                                                                                            |                                                    | Sampling Date<br>Extraction Date                                                                                                                                                 | n/a<br>1-Oct-20      | Approved:<br><i>T.Patterson</i><br>e-signature |
| Split Ratio 1                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                            |                                                    | Workgroup                                                                                                                                                                        | WG3415590            | 22-Oct-2020                                    |
| Run Information<br>Filename<br>Run Date<br>Final Volume<br>Dilution Factor<br>Analysis Units<br>Instrument<br>Column                                                                                                                                                                                                                                                                                                    | Run 1<br>201021/<br>10/22/2<br>0.1<br>1<br>ng<br>MSD-5<br>HP5MS (                                                                                                           | .08.D<br>220 3:08<br>mL<br>JSO179454H                                                                                                                                      |                                                    |                                                                                                                                                                                  |                      |                                                |
| Target Analytes                                                                                                                                                                                                                                                                                                                                                                                                         | Ret.<br>Time                                                                                                                                                                | Concentration                                                                                                                                                              | Flags                                              |                                                                                                                                                                                  |                      |                                                |
| Naphthalene<br>2-Methylnaphthalene<br>1-Methylnaphthalene<br>Acenaphthylene<br>Acenaphthylene<br>Acenaphthene<br>Fluorene<br>Phenanthrene<br>Anthracene<br>Fluoranthene<br>Pyrene<br>Benzo(a)Anthracene<br>Chrysene<br>Benzo(b)Fluoranthene<br>Benzo(c)Pyrene<br>Benzo(c)Pyrene<br>Benzo(a)Pyrene<br>Perylene<br>Indeno(1,2,3-cd)Pyrene<br>Dibenzo(a,h)Anthracene<br>Benzo(g,h,i)Perylene<br><b>Additional Analytes</b> | 2.93<br>3.56<br>3.68<br>4.75<br>5.05<br>5.99<br>8.20<br>8.32<br>11.61<br>12.25<br>16.17<br>16.27<br>19.49<br>19.55<br>20.25<br>20.39<br>20.62<br>24.12<br>24.28<br>25.05    | 45.6 M<br>36.6<br>24.9<br>4.78 M<br>13.0<br>11.7<br>34.1<br>7.23<br>1.48<br>1.31<br>0.860 M<br>2.14 M<br>1.17<br>2.50 M<br>0.820 M<br>0.680 M<br>1.52<br>1.59 M<br>0.740 M | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R     |                                                                                                                                                                                  |                      |                                                |
| Biphenyl<br>o-Terphenyl<br>Benzo(a)fluorene                                                                                                                                                                                                                                                                                                                                                                             | 4.12<br>9.49<br>13.44                                                                                                                                                       | 42.0<br>1.48<br>1.15                                                                                                                                                       | 0                                                  |                                                                                                                                                                                  |                      |                                                |
| Benzo(b)fluorene                                                                                                                                                                                                                                                                                                                                                                                                        | 13.64                                                                                                                                                                       | 1.12                                                                                                                                                                       |                                                    |                                                                                                                                                                                  |                      |                                                |
| 1-Methylnaphthalene-D10<br>Fluorene D10<br>Terphenyl D14(Surr.)                                                                                                                                                                                                                                                                                                                                                         | us ng spikea<br>)                                                                                                                                                           | 76 Rec<br>NS<br>NS<br>NS                                                                                                                                                   |                                                    |                                                                                                                                                                                  |                      |                                                |
| Extraction Standards<br>Naphthalene D8<br>2-Methylnaphthalene-D10<br>Acenaphthylene D8<br>Phenanthrene D10<br>Anthracene-D10<br>Fluoranthene D10<br>Benz(a)Anthracene-D12<br>Chrysene D12<br>Benzo(k)Fluoranthene-D1<br>Benzo(k)Fluoranthene-D1<br>Benzo(a)Pyrene D12<br>Perylene D12<br>Indeno(1,2,3,cd)Pyrene-D<br>Dibenz(a,h)Anthracene-D<br>Benzo(g,h,i)Perylene D12                                                | 200 2.92<br>200 3.53<br>200 4.72<br>200 8.15<br>200 8.27<br>200 11.56<br>200 16.21<br>2 200 19.44<br>2 200 19.52<br>200 20.32<br>200 20.55<br>012 200 24.00<br>14 200 24.17 | % Rec<br>23.1 M<br>58.4<br>53.3<br>34.2<br>29.0<br>65.1<br>66.1<br>60.7<br>102.5<br>63.9<br>74.4<br>70.5<br>113.9 M<br>100.3 M<br>94.4 M                                   | R                                                  | Limits<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150<br>50-150 |                      |                                                |
| M<br>U<br>R<br>NS                                                                                                                                                                                                                                                                                                                                                                                                       | Indicates that<br>Indicates that<br>Indicates that<br>Indicates that                                                                                                        | a peak has been manu<br>his compound was no<br>he ion abundance rati<br>his standard was not                                                                               | ally integ<br>t detecte<br>o for this<br>spiked to | grated.<br>ed above the MDL.<br>s compound did not meet the ad<br>o sample                                                                                                       | cceptance criterion. |                                                |

|                                                                                                   |                                         |                                                                                                                 |                                                                |                                          | AL                       | S Life                  | Scie                                              | ences                                 |                             |                           |
|---------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|--------------------------|-------------------------|---------------------------------------------------|---------------------------------------|-----------------------------|---------------------------|
|                                                                                                   |                                         |                                                                                                                 |                                                                |                                          | Sa                       | ample An                | alysis                                            | Report                                |                             |                           |
| Sample Name<br>ALS Sample ID<br>Analysis Method<br>Analysis Type                                  | COURTI<br>L251022<br>PAH by C<br>Sample | <b>CE-PAH-SE</b><br>2-1<br>CARB 429                                                                             | EP24                                                           |                                          |                          | •                       | Samplin<br>Extraction                             | g Date<br>on Date                     | 24-Sep-20 00:00<br>1-Oct-20 |                           |
| Sample Matrix                                                                                     | Puf<br>1                                | Sample                                                                                                          |                                                                |                                          |                          |                         |                                                   |                                       |                             | Approved:<br>T. Patterson |
| Percent Moisture                                                                                  | n/a                                     | Sample                                                                                                          |                                                                |                                          |                          |                         |                                                   |                                       |                             | e-signature               |
| Split Ratio                                                                                       | 1                                       |                                                                                                                 |                                                                |                                          |                          |                         | Workgro                                           | oup                                   | WG3415590                   | 22-Oct-2020               |
| Run Information                                                                                   |                                         | F                                                                                                               | Run 1                                                          |                                          |                          |                         | Run 2                                             |                                       |                             |                           |
| Filename<br>Run Date<br>Final Volume<br>Dilution Factor<br>Analysis Units<br>Instrument<br>Column |                                         | 2<br>1<br>0<br>1<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 201015A2<br>10/16/20:<br>0.1 r<br>1<br>1g<br>MSD-5<br>HP5MS US | :5.D<br>20 5:37<br>mL<br>50179454H       |                          |                         | 201015/<br>10/16/2<br>0.1<br>20<br>MSD-5<br>HP5MS | A23.D<br>020 4:26<br>mL<br>JSO179454H |                             |                           |
| Target Analytes                                                                                   |                                         |                                                                                                                 | Ret.<br>Time                                                   | Concentration ng                         | Flags                    |                         | Ret.<br>Time.                                     | Concentratio<br>ng                    | n<br>Flags                  |                           |
| Naphthalene                                                                                       |                                         |                                                                                                                 |                                                                |                                          |                          |                         | 2.93                                              | 16500                                 |                             |                           |
| 2-Methylnaphthalene                                                                               |                                         |                                                                                                                 |                                                                |                                          |                          |                         | 3.56                                              | 3240                                  |                             |                           |
| 1-Methylnaphthalene<br>Acenaphthylene                                                             |                                         |                                                                                                                 | 4.75                                                           | 43.6 N                                   | 1                        |                         | 3.68                                              | 2450                                  |                             |                           |
| Acenaphthene                                                                                      |                                         |                                                                                                                 |                                                                |                                          |                          |                         | 5.05                                              | 1040                                  |                             |                           |
| Fluorene                                                                                          |                                         |                                                                                                                 |                                                                |                                          |                          |                         | 5.99                                              | 662                                   |                             |                           |
| Anthracene                                                                                        |                                         |                                                                                                                 | 8.32                                                           | 62.8                                     |                          |                         | 8.21                                              | 913                                   |                             |                           |
| Fluoranthene                                                                                      |                                         |                                                                                                                 |                                                                |                                          |                          |                         | 11.62                                             | 117                                   |                             |                           |
| Pyrene                                                                                            |                                         |                                                                                                                 | 12.26                                                          | 158                                      |                          |                         |                                                   |                                       |                             |                           |
| Benzo(a)Anthracene                                                                                |                                         |                                                                                                                 | 16.17<br>16.28                                                 | 11.1                                     | R                        |                         |                                                   |                                       |                             |                           |
| Benzo(b)Fluoranthen                                                                               | e                                       |                                                                                                                 | 19.51                                                          | 26.9                                     | i.                       |                         |                                                   |                                       |                             |                           |
| Benzo(k)Fluoranthen                                                                               | e                                       |                                                                                                                 | 19.56                                                          | 22.6 N                                   | 1                        |                         |                                                   |                                       |                             |                           |
| Benzo(e)Pyrene                                                                                    |                                         |                                                                                                                 | 20.25                                                          | 16.8                                     |                          |                         |                                                   |                                       |                             |                           |
| Benzo(a)Pyrene<br>Pervlene                                                                        |                                         |                                                                                                                 | 20.38                                                          | 16.6                                     |                          |                         |                                                   |                                       |                             |                           |
| Indeno(1,2,3-cd)Pyre                                                                              | ene                                     |                                                                                                                 | 24.08                                                          | 14.2 N                                   | 1                        |                         |                                                   |                                       |                             |                           |
| Dibenzo(a,h)Anthrace                                                                              | ene                                     |                                                                                                                 | 24.27                                                          | 2.49 N                                   | 1 R                      |                         |                                                   |                                       |                             |                           |
| Benzo(g,h,i)Perylene                                                                              |                                         |                                                                                                                 | 25.05                                                          | 16.0 N                                   | 1                        |                         |                                                   |                                       |                             |                           |
| Additional Analytes                                                                               | 5                                       |                                                                                                                 |                                                                |                                          |                          |                         | 2.00                                              | 1240                                  |                             |                           |
| Biphenyl                                                                                          |                                         |                                                                                                                 |                                                                |                                          |                          |                         | 4.12                                              | 1200                                  |                             |                           |
| o-Terphenyl                                                                                       |                                         |                                                                                                                 | 9.50                                                           | 10.4                                     |                          |                         |                                                   |                                       |                             |                           |
| Benzo(a)fluorene                                                                                  |                                         |                                                                                                                 | 13.43                                                          | 17.4 N                                   | 1                        |                         |                                                   |                                       |                             |                           |
| Field Sampling Star                                                                               | ndards                                  | na spil                                                                                                         | 13.00                                                          | 21.5<br>% Rec                            | к                        |                         |                                                   |                                       |                             |                           |
| 1-Methylnanhthaleno                                                                               | -D10                                    | 200                                                                                                             | 3 61                                                           | 80 8                                     |                          |                         |                                                   |                                       |                             |                           |
| Fluorene D10                                                                                      | -010                                    | 200                                                                                                             | 5.93                                                           | 96                                       |                          |                         |                                                   |                                       |                             |                           |
| Terphenyl D14(Surr.)                                                                              | )                                       | 200                                                                                                             | 13.06                                                          | 91.5 M                                   | 1                        |                         |                                                   |                                       |                             |                           |
| Extraction Standar                                                                                | ds                                      |                                                                                                                 |                                                                | % Rec                                    |                          | Limits                  |                                                   | % Rec                                 |                             |                           |
| Naphthalene D8                                                                                    |                                         | 200                                                                                                             |                                                                |                                          |                          | 50-150                  | 2.91                                              | 17.4                                  | R                           |                           |
| 2-Methylnaphthalene                                                                               | -D10                                    | 200                                                                                                             |                                                                |                                          |                          | 50-150                  | 3.52                                              | 38.4                                  |                             |                           |
| Acenaphthylene D8                                                                                 |                                         | 200                                                                                                             | 4.73                                                           | 45.1                                     |                          | 50-150                  | 0.45                                              | <b>F</b> ( <b>7</b>                   |                             |                           |
| Anthracene-D10                                                                                    |                                         | 200                                                                                                             | 8 28                                                           | 74 9                                     |                          | 50-150<br>50-150        | 8.15                                              | 56.7                                  |                             |                           |
| Fluoranthene D10                                                                                  |                                         | 200                                                                                                             | 0.20                                                           | ,,                                       |                          | 50-150                  | 11.56                                             | 72.4                                  |                             |                           |
| Benz(a)Anthracene-D                                                                               | 012                                     | 200                                                                                                             | 16.10                                                          | 87.3                                     |                          | 50-150                  |                                                   |                                       |                             |                           |
| Chrysene D12<br>Benzo(b)Elucropthere                                                              | e-D12                                   | 200                                                                                                             | 16.21                                                          | 70.4                                     |                          | 50-150                  |                                                   |                                       |                             |                           |
| Benzo(k)Fluoranthen                                                                               | e-D12<br>e-D12                          | 200                                                                                                             | 19.45                                                          | 73.5                                     | R                        | 50-150                  |                                                   |                                       |                             |                           |
| Benzo(a)Pyrene D12                                                                                | -                                       | 200                                                                                                             | 20.32                                                          | 81.8                                     |                          | 50-150                  |                                                   |                                       |                             |                           |
| Perylene D12                                                                                      |                                         | 200                                                                                                             | 20.56                                                          | 94.4                                     |                          | 50-150                  |                                                   |                                       |                             |                           |
| Indeno(1,2,3,cd)Pyre                                                                              | ene-D12                                 | 200                                                                                                             | 23.99                                                          | 144.1                                    | 4                        | 50-150                  |                                                   |                                       |                             |                           |
| Benzo(g,h,i)Pervlene                                                                              | D12                                     | 200                                                                                                             | ∠4.15<br>24.95                                                 | 104.3 M                                  | n<br>1                   | 50-150<br>50-150        |                                                   |                                       |                             |                           |
| Sector Sector Sector                                                                              |                                         | 200                                                                                                             |                                                                |                                          |                          |                         |                                                   |                                       |                             |                           |
| N<br>L                                                                                            | n<br>J                                  | Indicate<br>Indicate                                                                                            | es that a<br>es that th                                        | peak has been man<br>iis compound was no | ually inte<br>ot detecte | grated.<br>ed above the | MDL.                                              |                                       |                             |                           |
|                                                                                                   |                                         |                                                                                                                 |                                                                |                                          |                          |                         |                                                   |                                       |                             |                           |
| R                                                                                                 | 8                                       | Indicate                                                                                                        | es that th                                                     | e ion abundance ra                       | io for thi               | s compound              | did not n                                         | neet the accepta                      | ance criterion.             |                           |

|                                                                                                   |                                          |                                 |                                                           |                                         | AL                        | S Life                 | Scie                                                    | ences                                 |            |                         |                          |
|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------|------------------------|---------------------------------------------------------|---------------------------------------|------------|-------------------------|--------------------------|
|                                                                                                   |                                          |                                 |                                                           |                                         | Sa                        | mple An                | alysis                                                  | Report                                |            |                         |                          |
| Sample Name<br>ALS Sample ID<br>Analysis Method<br>Analysis Type                                  | RUNDLE<br>L2510222<br>PAH by C<br>Sample | -PAH-SEP:<br>2-2<br>ARB 429     | 24                                                        |                                         |                           | ·                      | Samplin<br>Extraction                                   | g Date<br>on Date                     | 24-<br>1-0 | -Sep-20 00:00<br>Dct-20 |                          |
| Sample Matrix                                                                                     | Puf<br>1                                 | Sample                          |                                                           |                                         |                           |                        |                                                         |                                       |            |                         | Approved:<br>T Patterson |
| Percent Moisture                                                                                  | n/a                                      | Sample                          |                                                           |                                         |                           |                        |                                                         |                                       |            |                         | e-signature              |
| Split Ratio                                                                                       | 1                                        |                                 |                                                           |                                         |                           |                        | Workgro                                                 | oup                                   | WG         | 53415590                | 22-Oct-2020              |
| Run Information                                                                                   |                                          | F                               | ≀un 1                                                     |                                         |                           |                        | Run 2                                                   |                                       |            |                         |                          |
| Filename<br>Run Date<br>Final Volume<br>Dilution Factor<br>Analysis Units<br>Instrument<br>Column |                                          | 2<br>1<br>0<br>1<br>r<br>N<br>F | :01015A2<br>0/16/202<br>).1 r<br>1g<br>//SD-5<br>1P5MS US | 6.D<br>20 6:12<br>nL<br>60179454H       |                           |                        | 201015/<br>10/16/2<br>0.1<br>20<br>mg<br>MSD-5<br>HP5MS | A24.D<br>020 5:01<br>mL<br>JSO179454H |            |                         |                          |
| Target Analytes                                                                                   |                                          |                                 | Ret.<br>Time                                              | Concentration ng                        | Flags                     |                        | Ret.<br>Time.                                           | Concentration                         | on<br>F    | Flags                   |                          |
| Naphthalene                                                                                       |                                          |                                 |                                                           |                                         |                           |                        | 2.93                                                    | 25500                                 | 0          |                         |                          |
| 2-Methylnaphthalene                                                                               | 2                                        |                                 |                                                           |                                         |                           |                        | 3.56                                                    | 6250                                  | 0          |                         |                          |
| 1-Methylnaphthalene<br>Acenaphthylene                                                             | 2                                        |                                 | 4.75                                                      | 35.2 M                                  | 1                         |                        | 3.68                                                    | 4500                                  | 0          |                         |                          |
| Acenaphthene                                                                                      |                                          |                                 |                                                           |                                         |                           |                        | 5.05                                                    | 2710                                  | 0          |                         |                          |
| Fluorene                                                                                          |                                          |                                 |                                                           |                                         |                           |                        | 5.99<br>8.21                                            | 1450                                  | 0          |                         |                          |
| Anthracene                                                                                        |                                          |                                 | 8.32                                                      | 122                                     |                           |                        | 0.21                                                    | 2300                                  | 0          |                         |                          |
| Fluoranthene                                                                                      |                                          |                                 |                                                           |                                         |                           |                        | 11.62                                                   | 316                                   | 6          |                         |                          |
| Pyrene<br>Benzo(a)Anthracene                                                                      |                                          |                                 | 16 17                                                     | 7.60                                    | Þ                         |                        | 12.26                                                   | 145                                   | 5          |                         |                          |
| Chrysene                                                                                          |                                          |                                 | 16.29                                                     | 33.6                                    | R                         |                        |                                                         |                                       |            |                         |                          |
| Benzo(b)Fluoranthen                                                                               | e                                        |                                 | 19.52                                                     | 20.7 N                                  | 1 R                       |                        |                                                         |                                       |            |                         |                          |
| Benzo(k)Fluoranthen                                                                               | e                                        |                                 | 19.55                                                     | 14.2 M                                  | 1 R                       |                        |                                                         |                                       |            |                         |                          |
| Benzo(e)Pyrene                                                                                    |                                          |                                 | 20.26                                                     | 10.9                                    | R                         |                        |                                                         |                                       |            |                         |                          |
| Benzo(a)Pyrene                                                                                    |                                          |                                 | 20.39                                                     | 18.6 N                                  | 1 R                       |                        |                                                         |                                       |            |                         |                          |
| Perylene                                                                                          | <b></b>                                  |                                 | 20.62                                                     | 0.710 N                                 | 1 K<br>1 D                |                        |                                                         |                                       |            |                         |                          |
| Dibenzo(a h)Anthrace                                                                              | ene                                      |                                 | 24.10                                                     | 2.05 N                                  | IR                        |                        |                                                         |                                       |            |                         |                          |
| Benzo(g,h,i)Perylene                                                                              |                                          |                                 | 25.06                                                     | 12.8                                    |                           |                        |                                                         |                                       |            |                         |                          |
| Additional Analytes                                                                               | s                                        |                                 |                                                           |                                         |                           |                        |                                                         |                                       |            |                         |                          |
| Tetralin                                                                                          |                                          |                                 |                                                           |                                         |                           |                        | 2.80                                                    | 3930                                  | 0          |                         |                          |
| Biphenyl                                                                                          |                                          |                                 |                                                           |                                         |                           |                        | 4.12                                                    | 1380                                  | 0          |                         |                          |
| o-Terphenyl                                                                                       |                                          |                                 | 9.50                                                      | 12.1 N                                  | 1                         |                        |                                                         |                                       |            |                         |                          |
| Benzo(a)fluorene<br>Benzo(b)fluorene                                                              |                                          |                                 | 13.43<br>13.65                                            | 15.2 M                                  | 1<br>R                    |                        |                                                         |                                       |            |                         |                          |
| Field Sampling Star                                                                               | ndards                                   | ng spil                         | ked                                                       | % Rec                                   | K                         |                        |                                                         |                                       |            |                         |                          |
| 1-Methvlnaphthalene                                                                               | e-D10                                    | 200                             | 3.64                                                      | 86.1                                    |                           |                        |                                                         |                                       |            |                         |                          |
| Fluorene D10                                                                                      |                                          | 200                             | 5.93                                                      | 94.2                                    |                           |                        |                                                         |                                       |            |                         |                          |
| Terphenyl D14(Surr.)                                                                              | )                                        | 200                             | 13.06                                                     | 76.1 M                                  | 1                         |                        |                                                         |                                       |            |                         |                          |
| Extraction Standar                                                                                | ds                                       |                                 |                                                           | % Rec                                   |                           | Limits                 |                                                         | % Red                                 | с          |                         |                          |
| Naphthalene D8                                                                                    |                                          | 200                             |                                                           |                                         |                           | 50-150                 | 2.91                                                    | 23.5                                  | 5          | R                       |                          |
| 2-Methylnaphthalene                                                                               | e-D10                                    | 200                             |                                                           |                                         |                           | 50-150                 | 3.52                                                    | 57.8                                  | 8          |                         |                          |
| Acenaphthylene D8                                                                                 |                                          | 200                             | 4.73                                                      | 43.3                                    |                           | 50-150                 | 0 15                                                    | 64 -                                  | 7          |                         |                          |
| Anthracene-D10                                                                                    |                                          | 200                             | 8.28                                                      | 77.9                                    |                           | 50-150                 | 0.13                                                    | 04.                                   | ,          |                         |                          |
| Fluoranthene D10                                                                                  |                                          | 200                             |                                                           |                                         |                           | 50-150                 | 11.56                                                   | 73.2                                  | 2          |                         |                          |
| Benz(a)Anthracene-D                                                                               | 012                                      | 200                             | 16.11                                                     | 83.5                                    | R                         | 50-150                 |                                                         |                                       |            |                         |                          |
| Chrysene D12                                                                                      |                                          | 200                             | 16.22                                                     | 73.3                                    |                           | 50-150                 |                                                         |                                       |            |                         |                          |
| Benzo(b)Fluoranthen                                                                               | ie-D12                                   | 200                             | 19.45                                                     | 113.7 N                                 | 1 R                       | 50-150                 |                                                         |                                       |            |                         |                          |
| Benzo(k)Fluoranthen                                                                               | ie-D12                                   | 200                             | 19.54                                                     | 108.0 N                                 | I R                       | 50-150                 |                                                         |                                       |            |                         |                          |
| Pervlene D12                                                                                      |                                          | 200<br>200                      | 20.32<br>20.55                                            | 52.9<br>99.0                            | к                         | 50-150                 |                                                         |                                       |            |                         |                          |
| Indeno(1,2.3.cd)Pvre                                                                              | ene-D12                                  | 200                             | 24.00                                                     | 138.2                                   |                           | 50-150                 |                                                         |                                       |            |                         |                          |
| Dibenz(a,h)Anthrace                                                                               | ne-D14                                   | 200                             | 24.15                                                     | 93.0                                    |                           | 50-150                 |                                                         |                                       |            |                         |                          |
| Benzo(g,h,i)Perylene                                                                              | D12                                      | 200                             | 24.96                                                     | 88.7                                    |                           | 50-150                 |                                                         |                                       |            |                         |                          |
| N                                                                                                 | J                                        | Indicate<br>Indicate            | es that a<br>es that th                                   | peak has been man<br>is compound was no | ually inter<br>ot detecte | grated.<br>d above the | MDL.                                                    |                                       |            |                         |                          |
| R                                                                                                 | 2                                        | Indicate                        | es that th                                                | e ion abundance rat                     | io for this               | s compound             | did not n                                               | neet the accept                       | tance      | e criterion.            |                          |
|                                                                                                   |                                          |                                 |                                                           |                                         |                           |                        |                                                         |                                       |            |                         |                          |

| ALS Life Sciences                                |                            |                    |                     |           |                  |                                  |                       |  |             |  |  |  |
|--------------------------------------------------|----------------------------|--------------------|---------------------|-----------|------------------|----------------------------------|-----------------------|--|-------------|--|--|--|
|                                                  |                            |                    | Labora              | tory      | Control S        | Sample Analys                    | is Report             |  |             |  |  |  |
| Sample NameLabALS Sample IDWG3Apalysis MethodPAH | oratory Contr<br>3415590-2 | ol Sample          |                     |           |                  | Sampling Date<br>Extraction Date | n/a<br>1-Oct-20       |  |             |  |  |  |
| Analysis Type LCS                                | by CARD 427                |                    |                     |           |                  |                                  |                       |  |             |  |  |  |
| Sample Matrix QC                                 | 105                        |                    |                     |           |                  |                                  |                       |  | Approved:   |  |  |  |
| Percent Moisture n/a                             | LUS                        |                    |                     |           |                  |                                  |                       |  | e-signature |  |  |  |
| Split Ratio 1                                    |                            |                    |                     |           |                  | Workgroup                        | WG3415590             |  | 22-Oct-2020 |  |  |  |
| Run Information                                  |                            | Run 1              |                     |           |                  |                                  |                       |  |             |  |  |  |
| Filename                                         |                            | 201015A19.         | D                   |           |                  |                                  |                       |  |             |  |  |  |
| Final Volume                                     |                            | 0.1 ml             | 2:03                |           |                  |                                  |                       |  |             |  |  |  |
| Dilution Factor                                  |                            | 1                  |                     |           |                  |                                  |                       |  |             |  |  |  |
| Analysis Units                                   |                            | %                  |                     |           |                  |                                  |                       |  |             |  |  |  |
| Instrument<br>Column                             |                            | MSD-5<br>HP5MS USO | 179454H             |           |                  |                                  |                       |  |             |  |  |  |
|                                                  |                            | Ret.               |                     |           |                  |                                  |                       |  |             |  |  |  |
| Target Analytes                                  | ug spiked                  | Time               | % I                 | Flags     | Limits           |                                  |                       |  |             |  |  |  |
| 2-Methylnaphthalene                              | 100                        | 2.93               | 109.4               |           | 50-150<br>50-150 |                                  |                       |  |             |  |  |  |
| 1-Methylnaphthalene                              | 100                        | 3.68               | 144.8               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Acenaphthylene                                   | 100                        | 4.74               | 96.7                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Acenaphthene                                     | 100                        | 5.05               | 253.3               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Fluorene                                         | 100                        | 5.99               | 158.7               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Phenanthrene                                     | 100                        | 8.21               | 236.5               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Anthracene                                       | 100                        | 8.32               | 95.2<br>88.5        |           | 50-150<br>50-150 |                                  |                       |  |             |  |  |  |
| Pyrene                                           | 100                        | 12.26              | 88.9                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(a)Anthracene                               | 100                        | 16.17              | 83.8                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Chrysene                                         | 100                        | 16.29              | 99.1                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(b)Fluoranthene                             | 100                        | 19.51              | 83.7                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(k)Fluoranthene                             | 100                        | 19.58              | 105.2               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(e)Pyrene                                   | 100                        | 20.25              | 85.0<br>100.7       |           | 50-150<br>50-150 |                                  |                       |  |             |  |  |  |
| Perylene                                         | 100                        | 20.62              | 107.3               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Indeno(1,2,3-cd)Pyrene                           | 100                        | 24.07              | 95.2                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Dibenzo(a,h)Anthracene                           | 100                        | 24.27              | 87.4 M              |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(g,h,i)Perylene                             | 100                        | 25.05              | 98.9 M              |           | 50-150           |                                  |                       |  |             |  |  |  |
| Field Sampling Standard                          | as                         |                    | % Rec               |           |                  |                                  |                       |  |             |  |  |  |
| 1-Methylnaphthalene-D10                          |                            |                    | NS                  |           |                  |                                  |                       |  |             |  |  |  |
| Terphenyl D14(Surr.)                             |                            |                    | NS                  |           |                  |                                  |                       |  |             |  |  |  |
| Extraction Standards                             |                            |                    | % Rec               |           | Limits           |                                  |                       |  |             |  |  |  |
| Naphthalene D8                                   | 200                        | 2.91               | 46.1 M              |           | 30-150           |                                  |                       |  |             |  |  |  |
| 2-Methylnaphthalene-D10                          | 200                        | 3.52               | 70.9                |           | 30-150           |                                  |                       |  |             |  |  |  |
| Acenaphthylene D8                                | 200                        | 4.72               | 71.6                |           | 30-150           |                                  |                       |  |             |  |  |  |
| Phenanthrene D10                                 | 200                        | 8.15               | 71.6                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Fluoranthene D10                                 | 200                        | 0.20               | 82.0                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benz(a)Anthracene-D12                            | 200                        | 16.10              | 96.2                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Chrysene D12                                     | 200                        | 16.21              | 76.0                |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(b)Fluoranthene-D1                          | 2 200                      | 19.45              | 125.1 M             | R         | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(k)Fluoranthene-D1                          | 2 200                      | 19.52              | 79.9                | R         | 50-150           |                                  |                       |  |             |  |  |  |
| Pervlene D12                                     | 200                        | 20.32              | 109 7               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Indeno(1,2,3,cd)Pyrene-D                         | 12 200                     | 23.99              | 165.6               |           | 50-150           |                                  |                       |  |             |  |  |  |
| Dibenz(a,h)Anthracene-D                          | 14 200                     | 24.14              | 136.9 M             |           | 50-150           |                                  |                       |  |             |  |  |  |
| Benzo(g,h,i)Perylene D12                         | 200                        | 24.95              | 121.5 M             |           | 50-150           |                                  |                       |  |             |  |  |  |
| М                                                | Indica                     | tes that a pe      | eak has been manua  | ally inte | egrated.         |                                  |                       |  |             |  |  |  |
| D                                                | India                      | tos that the       | ion abundance ratio | for the   | is compours      | did not most the a               | econtanco critorior   |  |             |  |  |  |
| к<br>NS                                          | Indica                     | tes that this      | standard was not s  | piked t   | o sample         | a aia not meet the a             | acceptance criterion. |  |             |  |  |  |
|                                                  |                            |                    |                     |           |                  |                                  |                       |  |             |  |  |  |





L2510222-COFC



L2510225-COFC

Canada Toli Free: 1 800 668 9878

| Report To                      | Contact and company name below will appea          | ar on the final report   |                                                                                                      | Repor                                                                     | t Format / Distribut      | ion              | _      | Select        | Servic     | e Level     | Below -   | Contact     | your AM     | to confir    | rm all E&P   | TATS (SI    | urcharges   | may apply     |          |
|--------------------------------|----------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|------------------|--------|---------------|------------|-------------|-----------|-------------|-------------|--------------|--------------|-------------|-------------|---------------|----------|
| Company:                       | RWDI                                               |                          | Select Report Fo                                                                                     | ermat:                                                                    | D (DIGITAL)               | Stand            | ard TA | ls 15 b       | usiness    | days. Di    | FOX ana   | iysis star  | ndard TAT   | is 5 busi    | ness deys    |             | <u>.</u>    |               |          |
| Contact:                       | Matt Lantz                                         |                          | Quality Control (                                                                                    | QC) Report with Rep                                                       | ort                       | D YES            | D NO   | )<br> <br>    | 15 d       | lay (R-     | Regui     | ar) 🗆       | ζ.          | 5 Bus        | siness d     | ay - DT     | OX IR -     | Regulari      |          |
| Phone:                         | 519 823 1311                                       |                          | Compare Results                                                                                      | to Criteria on Report - pro                                               | wide details below if box | checked          |        | DRIT<br>D RIT | 10 da      | iy (P-5     | 0%]       | G           | EROE        | 3 Bus        | siness d     | ay - DT     | OX [E       | 100%]         |          |
|                                | Company address below will appear on the final     | i report                 | Select Distributio                                                                                   | on:                                                                       | 🖾 EMAIL                   | O MAIL O F       | AX     | 8 (B)         | 5 day      | [E-10       | 0%]       |             | , a         |              |              |             | -           | •             |          |
| Street:                        | 600 Southgate Drive                                |                          | Email 1 or Fax                                                                                       |                                                                           | Matt.Lantz@rwdi.c         | xom              |        |               | Date a     | ad Time     | Require   | d for all l | E&P TA1     | rs:          |              | dd          | -mmm-y      | y hh:mm       | ·        |
| City/Province:                 | Guelph, Ontario                                    |                          | Email 2                                                                                              |                                                                           |                           |                  |        | For tes       | ts that c  | an not b    | e perforn | ned accord  | ling to the | e service l  | level select | ed, you wil | l be contac | ted.          |          |
| Postal Code:                   | N1G 4P6                                            |                          | Email 3                                                                                              |                                                                           |                           |                  |        |               |            |             | _         |             | A           | nalysis      | Reques       | ,t          |             |               |          |
| Invoice To                     | Same as Report To                                  | NO                       |                                                                                                      | in                                                                        | voice Distribution        |                  |        | S             |            | Indicate    | Filtered  | (F), Pres   | erved (P)   | ) or Filtere | id and Pre:  | served (F/  | P) below    |               |          |
|                                | Copy of Invoice with Report                        | NO                       | Select Invoice Di                                                                                    | istribution:                                                              | © EMA                     |                  | FAX    | <u> </u> #    |            |             |           |             |             |              |              |             |             | $\Box$ (      | Δ        |
| Company:                       |                                                    |                          | Email 1 or Fax                                                                                       |                                                                           |                           |                  |        | Ī             |            |             |           |             |             |              |              |             |             |               | 2        |
| Contact:                       |                                                    |                          | Email 2                                                                                              |                                                                           |                           |                  |        |               |            |             |           |             |             |              | i İ          |             |             |               | <u>0</u> |
|                                | Project information                                |                          |                                                                                                      | Oil and Ges                                                               | Required Fields (C        | lient use)       |        | 15            |            |             | ł         | 1           |             |              | 1            | f           |             |               | <u> </u> |
| ALS Account                    | #/Quote #:                                         |                          | AFE/Cost Center:                                                                                     |                                                                           |                           | PO#              |        | 1 <u>0</u>    |            |             |           |             |             |              |              |             |             |               | Ž        |
| Job#:                          | DYEC                                               |                          | Major/Minor Code:                                                                                    |                                                                           |                           | Routing Code:    | _      | U.            | 5          |             |           |             |             |              | 1            |             |             |               | 0        |
| PO/AFE:                        | 1803743 Phase 1000                                 |                          | Requisitioner:                                                                                       |                                                                           |                           |                  |        | 16            | E E        |             |           |             |             |              |              |             |             |               | ທ        |
| LSD:                           |                                                    |                          | Location:                                                                                            | ocation:                                                                  |                           |                  |        |               |            |             |           |             |             | · ·          |              |             |             | <b>1</b>      |          |
| ALS LAD WO                     | nk Order# (lab use only):                          |                          | ALS Contact:                                                                                         | BEI                                                                       | HUO                       |                  |        |               |            |             |           |             |             |              | Ч Б<br>И     |             |             |               |          |
| ALS Sample #<br>(lab use only) | Sample Identification<br>(This description will as | and/or Coordinates       |                                                                                                      |                                                                           | SP, IC                    | HA               | ×      |               |            |             |           |             |             |              | SAI          |             |             |               |          |
|                                | 1-7-02479-3                                        | - Martin                 | CG.                                                                                                  | $\frac{\text{Volume (m3)}}{302} = \frac{24}{24} \frac{24}{24} \text{ Jr}$ |                           |                  |        |               |            |             |           |             |             |              | $\square$    | +           | ++          |               |          |
|                                | 140836                                             |                          |                                                                                                      | 1738                                                                      | 18-500 70                 | 24hr             | Air    | -             |            |             |           |             | +-          | +            | <u> </u>     |             | +           | -             |          |
| 2                              | TUNNER                                             |                          |                                                                                                      | 1605                                                                      | 10 50-20                  | 24br             | Air    |               | $\diamond$ | $\vdash$    | -+        |             |             |              | $\vdash$     | +           | +           |               |          |
| 2                              | 170000                                             | Duck                     |                                                                                                      | 1095                                                                      | 04-20-00                  | 24hr             |        |               | $\sim$     |             | —- -      |             | +-          |              | -+           | +           | +           | <u> </u>      |          |
|                                | 2303919-2                                          | - kundi                  |                                                                                                      | 304                                                                       | 29-30-20                  | 2411             | AIF    | –             |            |             |           | -+          |             |              | ┢──┤─        | —           | ++          | $\rightarrow$ |          |
| <u> </u>                       | 190335                                             |                          |                                                                                                      | 1756                                                                      | 18-xy-w                   | 24/11            | AIr    | -             | X          |             | _+        |             | _           | +            | $\vdash$     |             | +           |               |          |
| <u> </u>                       | 140837                                             |                          |                                                                                                      | 1662                                                                      | 24-29-20                  | 24hr             | Air    |               | ĮХ         |             |           |             |             |              | $\vdash$     |             | $\perp$     | $\perp$       |          |
|                                |                                                    |                          |                                                                                                      |                                                                           |                           | 24hr             | Air    |               |            |             |           |             |             |              |              |             |             |               | _        |
|                                |                                                    |                          |                                                                                                      |                                                                           |                           | 24hr             | Air    |               |            |             |           |             |             |              |              |             |             |               |          |
|                                |                                                    |                          |                                                                                                      |                                                                           |                           | 24hr             | Air    |               |            |             |           |             |             |              |              |             |             |               |          |
|                                |                                                    |                          |                                                                                                      |                                                                           |                           | 24hr             | Air    |               |            |             |           |             |             |              |              |             |             |               |          |
|                                |                                                    |                          |                                                                                                      |                                                                           |                           | 24hr             | Air    |               |            |             |           |             | +           |              |              | -           | +           |               |          |
|                                |                                                    |                          | _                                                                                                    |                                                                           |                           | 24hr             | Air    |               |            |             |           |             |             | +            |              | +           | ++          |               |          |
|                                | <u> </u>                                           |                          |                                                                                                      |                                                                           |                           |                  | 1      |               |            |             | SAN       | PLE CO      | ONDITH      | ON AS        | RECEIV       | ED (lab     | use on!     | <u></u>       |          |
| Drinkin                        | g Water (DW) Samples <sup>1</sup> (client use)     | Special Instructions / S | ns / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) |                                                                           |                           |                  |        |               |            |             | •••••     |             | SIF         | Observ       | ations       | Yes         |             | Ϊ             | 3        |
| Are samples tal                | ken from a Regulated DW System?                    |                          |                                                                                                      |                                                                           |                           |                  |        |               |            | $\boxtimes$ | ice Cu    | ibes [      | Cus         | tody se      | al intact    | Yet         | <b>,</b> 1  | ā             | Ē        |
| D Y                            | res 🗹 NQ                                           |                          |                                                                                                      |                                                                           |                           |                  |        | Cool          | ing Ini    | tiated      |           | 5           | 2           |              |              |             |             |               |          |
| Are samples for                | r human consumption/ use?                          | Samples are 10 day TAT   | r –                                                                                                  |                                                                           |                           |                  |        |               | 4          | IIITIAL (   | COOLEF    | TEMPER      | RATURE      | s*C          | =            | FINAL       | COOLER      | TEMPERAT      | TURES "  |
|                                | 7ES 🖸 NO                                           |                          |                                                                                                      |                                                                           |                           |                  |        | 3.8           | Ċ          | <u>่</u> ก. | 3.0       |             |             |              |              |             |             |               |          |
|                                | SHIPMENT RELEASE (client use)                      |                          |                                                                                                      | INITIAL S                                                                 | HIPMENT RECEPT            | ION (lab use onl | y)     |               |            |             |           | FIN         | AL SH       | IPMENT       | RECEP        | TION (I     | ab use (    | xnly)         |          |
| Released by:                   | M Date: 29-5                                       | r-2011:15                | Received by:                                                                                         | HON BUATO                                                                 | <b></b>                   | Date: Sept.      | 2020   | Time          | 20         | Rece        | ived by   | r.          |             |              | Date:        |             |             | Time          | ð:       |
| REFER TO BAC                   | K PAGE FOR ALS LOCATIONS AND SAMPLING              | INFORMATION              |                                                                                                      |                                                                           | W                         |                  | T COP  | Ý             |            |             |           |             |             |              | <u>_</u>     | NOV 20      |             |               |          |

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

## Table B5: 2020 Courtice Station Q3 Monitoring Results for PAHs

| Contaminant                           | Units             | MECP<br>Criteria                                              | HHRA<br>Health<br>Based<br>Criteria | 24-Sep-20 |
|---------------------------------------|-------------------|---------------------------------------------------------------|-------------------------------------|-----------|
| 1-Methylnaphthalene                   | ng/m <sup>3</sup> | 12000                                                         | -                                   | 8.11E+00  |
| 2-Methylnaphthalene                   | ng/m <sup>3</sup> | 10000                                                         | -                                   | 1.07E+01  |
| Acenaphthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 3.44E+00  |
| Acenaphthylene                        | ng/m <sup>3</sup> | 3500                                                          | -                                   | 1.44E-01  |
| Anthracene                            | ng/m <sup>3</sup> | 200                                                           | -                                   | 2.08E-01  |
| Benzo(a)Anthracene                    | ng/m <sup>3</sup> | -                                                             | -                                   | 3.68E-02  |
| Benzo(a)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 5.76E-02  |
| Benzo(a)Pyrene<br>(Historically High) | ng/m <sup>3</sup> | 0.05 <sup>[1]</sup><br>5 <sup>[2]</sup><br>1.1 <sup>[3]</sup> | 1                                   | 5.50E-02  |
| Benzo(b)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 8.91E-02  |
| Benzo(b)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 7.12E-02  |
| Benzo(e)Pyrene                        | ng/m <sup>3</sup> | -                                                             | -                                   | 5.56E-02  |
| Benzo(g,h,i)Perylene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 5.30E-02  |
| Benzo(k)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 7.48E-02  |
| Biphenyl                              | ng/m <sup>3</sup> | -                                                             | -                                   | 3.34E+00  |
| Chrysene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.51E-01  |
| Dibenzo(a,h)Anthracene                | ng/m <sup>3</sup> | -                                                             | -                                   | 8.25E-03  |
| Fluoranthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 3.87E-01  |
| Fluorene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 2.19E+00  |
| Indeno(1,2,3-cd)Pyrene                | ng/m <sup>3</sup> | -                                                             | -                                   | 4.70E-02  |
| Naphthalene                           | ng/m <sup>3</sup> | 22500                                                         | 22500                               | 5.46E+01  |
| o-Terphenyl                           | ng/m <sup>3</sup> | -                                                             | -                                   | 3.44E-02  |
| Perylene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 5.23E-03  |
| Phenanthrene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 3.02E+00  |
| Pyrene                                | ng/m <sup>3</sup> | -                                                             | -                                   | 5.23E-01  |
| Tetralin                              | ng/m <sup>3</sup> | -                                                             | -                                   | 4.17E+00  |
| Total PAH <sup>[4]</sup>              | ng/m <sup>3</sup> | -                                                             | -                                   | 9.17E+01  |

### Table B6: 2020 Rundle Station Q3 Monitoring Results for PAHs

| Contaminant                           | Units             | MECP<br>Criteria                                              | HHRA<br>Health<br>Based<br>Criteria | 24-Sep-20 |
|---------------------------------------|-------------------|---------------------------------------------------------------|-------------------------------------|-----------|
| 1-Methylnaphthalene                   | ng/m <sup>3</sup> | 12000                                                         | -                                   | 1.48E+01  |
| 2-Methylnaphthalene                   | ng/m <sup>3</sup> | 10000                                                         | -                                   | 2.06E+01  |
| Acenaphthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 8.91E+00  |
| Acenaphthylene                        | ng/m <sup>3</sup> | 3500                                                          | -                                   | 1.16E-01  |
| Anthracene                            | ng/m <sup>3</sup> | 200                                                           | -                                   | 4.01E-01  |
| Benzo(a)Anthracene                    | ng/m <sup>3</sup> | -                                                             | -                                   | 2.50E-02  |
| Benzo(a)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 5.00E-02  |
| Benzo(a)Pyrene<br>(Historically High) | ng/m <sup>3</sup> | 0.05 <sup>[1]</sup><br>5 <sup>[2]</sup><br>1.1 <sup>[3]</sup> | 1                                   | 6.12E-02  |
| Benzo(b)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 6.81E-02  |
| Benzo(b)fluorene                      | ng/m <sup>3</sup> | -                                                             | -                                   | 7.30E-02  |
| Benzo(e)Pyrene                        | ng/m <sup>3</sup> | -                                                             | -                                   | 3.59E-02  |
| Benzo(g,h,i)Perylene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 4.21E-02  |
| Benzo(k)Fluoranthene                  | ng/m <sup>3</sup> | -                                                             | -                                   | 4.67E-02  |
| Biphenyl                              | ng/m <sup>3</sup> | -                                                             | -                                   | 4.54E+00  |
| Chrysene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.11E-01  |
| Dibenzo(a,h)Anthracene                | ng/m <sup>3</sup> | -                                                             | -                                   | 6.74E-03  |
| Fluoranthene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 1.04E+00  |
| Fluorene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 4.77E+00  |
| Indeno(1,2,3-cd)Pyrene                | ng/m <sup>3</sup> | -                                                             | -                                   | 3.21E-02  |
| Naphthalene                           | ng/m <sup>3</sup> | 22500                                                         | 22500                               | 8.39E+01  |
| o-Terphenyl                           | ng/m <sup>3</sup> | -                                                             | -                                   | 3.98E-02  |
| Perylene                              | ng/m <sup>3</sup> | -                                                             | -                                   | 2.34E-03  |
| Phenanthrene                          | ng/m <sup>3</sup> | -                                                             | -                                   | 7.57E+00  |
| Pyrene                                | ng/m <sup>3</sup> | -                                                             | -                                   | 4.77E-01  |
| Tetralin                              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.29E+01  |
| Total PAH <sup>[4]</sup>              | ng/m <sup>3</sup> | -                                                             | -                                   | 1.61E+02  |

Station: RofD Courtice Daily: 24/09/2020 Type: AVG 1 Hr. [5 Mins.]

|                   |         |       |       |       |        |          | Temperat |       |                     |       |          |            |          |          |          | Temperat |              |          |
|-------------------|---------|-------|-------|-------|--------|----------|----------|-------|---------------------|-------|----------|------------|----------|----------|----------|----------|--------------|----------|
|                   |         | NO    | NOO   | NOV   | 000    | Dett Mar | ure -    | Dain  | <b>T</b> . <b>T</b> |       | D        | Dein tetel | Hi-Vol   | PUF      | Descent  | ure -    | Libert Elser |          |
| Date & Time       | PIVI2.5 | NO    | NO2   | NUX   | 502    | Batt Min | Amplent  | Rain  | Ir_Temp             | RHAVG | Pressure | Rain totai | Pressure | Pressure | Pressure | Ambient  | HIVOI FIOW   | PUF FIOW |
| 0.4/00/0000 00.00 | ug/m3   | ррр   | ррр   | ррр   | ppb    | Volts    | C°       | mm    | 07.0                | %     | in HG    | mm         | in H20   | in H20   | kPa      | K        | cfm          | cfm      |
| 24/09/2020 00:00  | 17.9    | 0.9   | 9.7   | 10.6  | 0.425  | 13.1     | 14.137   | 0     | 27.3                | 79.7  | 29.63    | 0          | 3.37     | 37.35    | 100.33   | 287.287  | 40.24        | 7.23     |
| 24/09/2020 01:00  | 21.6    | 0.3   | 15.7  | 16    | 0.447  | 13.1     | 13.339   | 0     | 26.8                | 82.3  | 29.63    | 0          | 3.49     | 39.16    | 100.33   | 286.489  | 41.04        | 7.4      |
| 24/09/2020 02:00  | 25.7    | 0.6   | 13.5  | 14.1  | 2.488  | 13.1     | 11.69    | 0     | 27.2                | 89.3  | 29.62    | 0          | 3.47     | 39.63    | 100.31   | 284.84   | 41.04        | 7.46     |
| 24/09/2020 03:00  | 21.1    | 6.8   | 16.7  | 23.5  | 7.482  | 13.1     | 10.67    | 0     | 27.1                | 94.3  | 29.63    | 0          | 3.49     | 40.12    | 100.33   | 283.82   | 41.25        | 7.51     |
| 24/09/2020 04:00  | 18.4    | 8.2   | 17.2  | 25.4  | 2.043  | 13.1     | 10.774   | 0     | 26.9                | 94.2  | 29.62    | 0          | 3.49     | 40.01    | 100.31   | 283.924  | 41.23        | 7.5      |
| 24/09/2020 05:00  | 16.8    | 9.1   | 18    | 27.1  | 4.418  | 13.1     | 10.739   | 0     | 26.7                | 93.3  | 29.62    | 0          | 3.49     | 40.32    | 100.32   | 283.889  | 41.25        | 7.53     |
| 24/09/2020 06:00  | 16.1    | 29.5  | 23.5  | 53    | 11.103 | 13.1     | 10.845   | 0     | 26.5                | 92    | 29.63    | 0          | 3.49     | 40.2     | 100.33   | 283.995  | 41.28        | 7.51     |
| 24/09/2020 07:00  | 15.7    | 22.9  | 19.8  | 42.7  | 9.006  | 13.1     | 14.375   | 0     | 27                  | 82.3  | 29.64    | 0          | 3.5      | 39.42    | 100.36   | 287.525  | 41.07        | 7.41     |
| 24/09/2020 08:00  | 14      | 5.3   | 10.7  | 16    | 3.622  | 13.1     | 18.107   | 0     | 26.8                | /1.2  | 29.65    | 0          | 3.51     | 39.91    | 100.41   | 291.257  | 40.88        | 7.41     |
| 24/09/2020 09:00  | 14.3    | 1.3   | 4.4   | 5.7   | 1.505  | 13.1     | 18.231   | 0     | 26.6                | 76.4  | 29.66    | 0          | 3.53     | 40.76    | 100.44   | 291.381  | 41.01        | 7.48     |
| 24/09/2020 10:00  | 14.7    | 0.9   | 3.3   | 4.2   | 1.178  | 13.1     | 18.103   | 0     | 26.3                | 80.1  | 29.66    | 0          | 3.53     | 41       | 100.45   | 291.253  | 41.02        | 7.5      |
| 24/09/2020 11:00  | 15.9    | 0.5   | 2.4   | 2.9   | 1.072  | 13.1     | 18.5     | 0     | 26.5                | 82.6  | 29.66    | 0          | 3.53     | 40.74    | 100.44   | 291.65   | 40.97        | 7.48     |
| 24/09/2020 12:00  | 14.9    | 0.2   | 2     | 2.2   | 1.017  | 13.1     | 19.162   | 0     | 26.5                | 80    | 29.65    | 0          | 3.53     | 40.17    | 100.4    | 292.312  | 40.91        | 7.42     |
| 24/09/2020 13:00  | 14.4    | 0.1   | 1.8   | 1.9   | 1.055  | 13.1     | 19.267   | 0     | 26.4                | 80.5  | 29.64    | 0          | 3.53     | 40.14    | 100.36   | 292.417  | 40.9         | 7.41     |
| 24/09/2020 14:00  | 14.1    | 0.1   | 2.1   | 2.2   | 1.06   | 13.1     | 19.344   | 0     | 26.2                | 79.1  | 29.62    | 0          | 3.53     | 40.28    | 100.32   | 292.494  | 40.85        | 7.42     |
| 24/09/2020 15:00  | 13.6    | 0     | 2.2   | 1.8   | 1.268  | 13.1     | 20.022   | 0     | 26.4                | 73.5  | 29.62    | 0          | 3.53     | 40.35    | 100.3    | 293.172  | 40.84        | 7.42     |
| 24/09/2020 16:00  | 15.2    | 0.1   | 3.5   | 3.4   | 0.975  | 13.1     | 19.342   | 0     | 26.3                | 81    | 29.62    | 0          | 3.53     | 40.54    | 100.32   | 292.492  | 40.9         | 7.44     |
| 24/09/2020 17:00  | 16.7    | 0.1   | 3.4   | 3.4   | 1.106  | 13.1     | 19.233   | 0     | 26.8                | 78.7  | 29.63    | 0          | 3.54     | 41.13    | 100.34   | 292.383  | 40.98        | 7.5      |
| 24/09/2020 18:00  | 16.2    | 0     | 5.9   | 5.8   | 1.209  | 13.1     | 18.782   | 0     | 26.7                | 85.6  | 29.64    | 0          | 3.53     | 41.22    | 100.37   | 291.932  | 40.95        | 7.51     |
| 24/09/2020 19:00  | 16.8    | 0.2   | 7.8   | 8     | 2.05   | 13.1     | 18.259   | 0     | 26.8                | 85.3  | 29.65    | 0          | 3.53     | 41.58    | 100.4    | 291.409  | 40.98        | 7.55     |
| 24/09/2020 20:00  | 19.6    | 0.2   | 17.7  | 17.8  | 2.222  | 13.1     | 17.732   | 0     | 26.9                | 85.5  | 29.66    | 0          | 3.52     | 41.14    | 100.43   | 290.882  | 40.95        | 7.52     |
| 24/09/2020 21:00  | 19.7    | 0.3   | 19    | 19.3  | 3.66   | 13.1     | 17.332   | 0     | 27                  | 83.7  | 29.66    | 0          | 3.52     | 41.57    | 100.45   | 290.482  | 40.97        | 7.56     |
| 24/09/2020 22:00  | 16.5    | 1     | 14.2  | 15.2  | 3.63   | 13.1     | 17.255   | 0     | 26.8                | 81.3  | 29.67    | 0          | 3.52     | 41.36    | 100.48   | 290.405  | 40.99        | 7.54     |
| 24/09/2020 23:00  | 16.7    | 0.4   | 11.6  | 12.1  | 2.933  | 13.1     | 17.641   | 0     | 26.8                | 81    | 29.67    | 0          | 3.53     | 41.19    | 100.48   | 290.791  | 41.03        | 7.52     |
| Minimum           | 13.6    | 0     | 1.8   | 1.8   | 0.425  | 13.1     | 10.67    | 0     | 26.2                | 71.2  | 29.62    | 0          | 3.37     | 37.35    | 100.3    | 283.82   | 40.24        | 7.23     |
| MinDate           | 15:00   | 15:00 | 13:00 | 15:00 | 00:00  | 00:00    | 03:00    | 00:00 | 14:00               | 08:00 | 02:00    | 00:00      | 00:00    | 00:00    | 15:00    | 03:00    | 00:00        | 00:00    |
| Maximum           | 25.7    | 29.5  | 23.5  | 53    | 11.103 | 13.1     | 20.022   | 0     | 27.3                | 94.3  | 29.67    | 0          | 3.54     | 41.58    | 100.48   | 293.172  | 41.28        | 7.56     |
| MaxDate           | 02:00   | 06:00 | 06:00 | 06:00 | 06:00  | 00:00    | 15:00    | 00:00 | 00:00               | 03:00 | 22:00    | 00:00      | 17:00    | 19:00    | 22:00    | 15:00    | 06:00        | 21:00    |
| Avg               | 16.9    | 3.7   | 10.3  | 13.9  | 2.791  | 13.1     | 16.37    | 0     | 26.7                | 83    | 29.64    | 0          | 3.51     | 40.39    | 100.38   | 289.52   | 40.98        | 7.47     |
| Num               | 24      | 24    | 24    | 24    | 24     | 24       | 24       | 24    | 24                  | 24    | 24       | 24         | 24       | 24       | 24       | 24       | 24           | 24       |
| Data[%]           | 100     | 100   | 100   | 100   | 100    | 100      | 100      | 100   | 100                 | 100   | 100      | 100        | 100      | 100      | 100      | 100      | 100          | 100      |
| STD               | 2.8     | 7.3   | 6.9   | 12.9  | 2.7    | No Data  | 3.2      | 0     | 0.3                 | 6     | 0        | 0          | 0        | 0.9      | 0.1      | 3.2      | 0.2          | 0.1      |

#### Station: RofD Rundle Daily: 24/09/2020 Type: AVG 1 Hr. [5 Mins.]

|                   |        |       |       |       |       |          | Temperat |       |                     |       |            |           |                                                                                             |          |          | Temperat |            |          |
|-------------------|--------|-------|-------|-------|-------|----------|----------|-------|---------------------|-------|------------|-----------|---------------------------------------------------------------------------------------------|----------|----------|----------|------------|----------|
| Data & Time       |        | NO    | NOO   | NOV   | 0.00  | Dett Mar | ure -    | Dain  | <b>T</b> . <b>T</b> |       | Dein tetel |           |                                                                                             | Hi-Vol   | PUF      | ure -    |            |          |
| Date & Time       | PIMZ.5 | NU    | NO2   | NUX   | 502   | Batt Min | Ambient  | Rain  | Ir_Temp             | RHAVG | Rain totai | VVS km/nr | WD                                                                                          | Pressure | Pressure | Amplent  | HIVOI FIOW | PUF FIOW |
| 0.1/00/0000.00.00 | ug/m3  | ppb   | ppb   | ppb   | ppb   | Volts    | C°       | mm    | <u> </u>            | %     | mm         | km/hr     | Deg                                                                                         | in H20   | in H20   | K        | ctm        | ctm      |
| 24/09/2020 00:00  | 13.6   | 0     | 1.9   | 1.4   | 0     | 13.2     | 13.8     | 0     | 23.1                | 80    | 0          | 5.01      | 284.01                                                                                      | 4.08     | 50.33    | 286.975  | 42.25      | 7.73     |
| 24/09/2020 01:00  | 12.8   | 0     | 1.7   | 1.2   | 0     | 13.2     | 12.4     | 0     | 23.3                | 84.9  | 0          | 2.65      | 280.57                                                                                      | 4.07     | 49.53    | 285.489  | 42.32      | 7.7      |
| 24/09/2020 02:00  | 12.1   | 0     | 1     | 0.8   | 0     | 13.2     | 10.1     | 0     | 22.7                | 90.9  | 0          | 0.61      | <samp< td=""><td>4.12</td><td>49.48</td><td>283.26</td><td>42.78</td><td>7.72</td></samp<>  | 4.12     | 49.48    | 283.26   | 42.78      | 7.72     |
| 24/09/2020 03:00  | 12.6   | 0.3   | 1.2   | 1.4   | 0     | 13.2     | 8.9      | 0     | 22                  | 96.7  | 0          | 0.24      | <samp< td=""><td>4.15</td><td>49.45</td><td>282.064</td><td>43.01</td><td>7.73</td></samp<> | 4.15     | 49.45    | 282.064  | 43.01      | 7.73     |
| 24/09/2020 04:00  | 13.3   | 0.7   | 1.1   | 1.5   | 0     | 13.2     | 8.4      | 0     | 21.4                | 98    | 0          | 0.55      | <samp< td=""><td>4.15</td><td>49.07</td><td>281.571</td><td>43.06</td><td>7.71</td></samp<> | 4.15     | 49.07    | 281.571  | 43.06      | 7.71     |
| 24/09/2020 05:00  | 14.3   | 0.1   | 0.9   | 0.7   | 0     | 13.2     | 8.2      | 0     | 21.7                | 98.7  | 0          | 1.58      | <samp< td=""><td>4.15</td><td>48.81</td><td>281.282</td><td>43.08</td><td>7.7</td></samp<>  | 4.15     | 48.81    | 281.282  | 43.08      | 7.7      |
| 24/09/2020 06:00  | 14.4   | 0.4   | 1.9   | 2.2   | 0     | 13.2     | 8.2      | 0     | 21.7                | 99.2  | 0          | 1.9       | 55.43                                                                                       | 4.12     | 48.31    | 281.377  | 42.94      | 7.66     |
| 24/09/2020 07:00  | 12.8   | 0.7   | 2.6   | 3.3   | 0     | 13.2     | 12.3     | 0     | 22.3                | 93.1  | 0          | 2.86      | 64.4                                                                                        | 4.02     | 47.1     | 285.487  | 42.02      | 7.52     |
| 24/09/2020 08:00  | 10.8   | 1.9   | 5.1   | 7     | 0.036 | 13.2     | 17.7     | 0     | 23.1                | 73.9  | 0          | 1.82      | 35.42                                                                                       | 3.86     | 45.28    | 290.841  | 40.74      | 7.33     |
| 24/09/2020 09:00  | 9.7    | 2.7   | 8.7   | 11.4  | 0.131 | 13.2     | 20       | 0     | 23                  | 67.1  | 0          | 2.32      | 213.28                                                                                      | 3.69     | 44.89    | 293.171  | 39.63      | 7.27     |
| 24/09/2020 10:00  | 10.5   | 1.1   | 6.3   | 7.5   | 0.088 | 13.2     | 19.7     | 0     | 23.2                | 69.7  | 0          | 6.07      | 185.62                                                                                      | 3.68     | 44.79    | 292.832  | 39.59      | 7.27     |
| 24/09/2020 11:00  | 11.4   | 2.6   | 5.2   | 7.8   | 0.071 | 13.2     | 20.2     | 0     | 23                  | 70.4  | 0          | 5.74      | 186.03                                                                                      | 3.66     | 44.58    | 293.319  | 39.46      | 7.25     |
| 24/09/2020 12:00  | 11.5   | 0.5   | 5.3   | 5.9   | 0.141 | 13.2     | 21       | 0     | 23                  | 65.5  | 0          | 5.22      | 196.81                                                                                      | 3.65     | 43.9     | 294.145  | 39.31      | 7.19     |
| 24/09/2020 13:00  | 9.4    | 0.1   | 3.5   | 3.5   | 0.287 | 13.2     | 21.8     | 0     | 23.1                | 59.6  | 0          | 5.11      | 186.41                                                                                      | 3.63     | 43.68    | 294.931  | 39.13      | 7.16     |
| 24/09/2020 14:00  | 9.5    | 0.2   | 5.4   | 5.5   | 0.446 | 13.2     | 21.5     | 0     | 23.1                | 60.2  | 0          | 3.94      | 181.76                                                                                      | 3.66     | 43.65    | 294.68   | 39.36      | 7.16     |
| 24/09/2020 15:00  | 9.1    | 0.1   | 5.9   | 5.9   | 0.465 | 13.2     | 21.8     | 0     | 23.2                | 53.9  | 0          | 3.08      | 184.11                                                                                      | 3.7      | 43.47    | 294.964  | 39.55      | 7.15     |
| 24/09/2020 16:00  | 11.3   | 0     | 7.2   | 6.9   | 0.368 | 13.2     | 20.7     | 0     | 23.2                | 63.8  | 0          | 4.07      | 132.3                                                                                       | 3.75     | 43.66    | 293.836  | 39.9       | 7.18     |
| 24/09/2020 17:00  | 13.8   | 0     | 9.1   | 8.6   | 0.22  | 13.2     | 19.2     | 0     | 23.1                | 77    | 0          | 3.21      | 86.79                                                                                       | 3.8      | 44.33    | 292.323  | 40.32      | 7.24     |
| 24/09/2020 18:00  | 14.2   | 0     | 9.1   | 8.6   | 0.146 | 13.2     | 18.4     | 0     | 23.2                | 84.5  | 0          | 2.39      | 85.31                                                                                       | 3.8      | 44.37    | 291.568  | 40.39      | 7.25     |
| 24/09/2020 19:00  | 14.8   | 0     | 6.2   | 5.6   | 0.12  | 13.2     | 17.3     | 0     | 23.1                | 86.5  | 0          | 3.09      | 50.69                                                                                       | 3.84     | 44.77    | 290.443  | 40.66      | 7.3      |
| 24/09/2020 20:00  | 16     | 1.3   | 6.9   | 7.9   | 0.172 | 13.2     | 15.7     | 0     | 23.3                | 92.3  | 0          | 2.42      | 58.45                                                                                       | 3.87     | 44.91    | 288.838  | 40.96      | 7.32     |
| 24/09/2020 21:00  | 15.9   | 0     | 5.4   | 4.8   | 0.103 | 13.2     | 15.2     | 0     | 23                  | 95    | 0          | 3.96      | 17.78                                                                                       | 3.88     | 45.52    | 288.341  | 41.06      | 7.37     |
| 24/09/2020 22:00  | 14.8   | 0     | 5.5   | 4.9   | 0.081 | 13.2     | 16       | 0     | 23.2                | 88.2  | 0          | 4.08      | 25.18                                                                                       | 3.86     | 45       | 289.185  | 40.86      | 7.33     |
| 24/09/2020 23:00  | 14.2   | 0     | 4.7   | 4     | 0.214 | 13.2     | 16.2     | 0     | 23.2                | 82.7  | 0          | 4.14      | 34.68                                                                                       | 3.8      | 44.27    | 289.395  | 40.54      | 7.27     |
| Minimum           | 9.1    | 0     | 0.9   | 0.7   | 0     | 13.2     | 8.2      | 0     | 21.4                | 53.9  | 0          | 0.24      | 17.78                                                                                       | 3.63     | 43.47    | 281.282  | 39.13      | 7.15     |
| MinDate           | 15:00  | 00:00 | 05:00 | 05:00 | 00:00 | 00:00    | 05:00    | 00:00 | 04:00               | 15:00 | 00:00      | 03:00     | 21:00                                                                                       | 13:00    | 15:00    | 05:00    | 13:00      | 15:00    |
| Maximum           | 16     | 2.7   | 9.1   | 11.4  | 0.465 | 13.2     | 21.8     | 0     | 23.3                | 99.2  | 0          | 6.07      | 284.01                                                                                      | 4.15     | 50.33    | 294.964  | 43.08      | 7.73     |
| MaxDate           | 20:00  | 09:00 | 17:00 | 09:00 | 15:00 | 00:00    | 13:00    | 00:00 | 01:00               | 06:00 | 00:00      | 10:00     | 00:00                                                                                       | 03:00    | 00:00    | 15:00    | 05:00      | 00:00    |
| Avg               | 12.6   | 0.5   | 4.7   | 4.9   | 0.129 | 13.2     | 16       | 0     | 22.8                | 80.5  | 0          | 3.17      | 127.25                                                                                      | 3.87     | 45.96    | 289.18   | 40.96      | 7.4      |
| Num               | 24     | 24    | 24    | 24    | 24    | 24       | 24       | 24    | 24                  | 24    | 24         | 24        | 20                                                                                          | 24       | 24       | 24       | 24         | 24       |
| Data[%]           | 100    | 100   | 100   | 100   | 100   | 100      | 100      | 100   | 100                 | 100   | 100        | 100       | 83.3                                                                                        | 100      | 100      | 100      | 100        | 100      |
| STD               | 2      | 0.8   | 2.6   | 2.9   | 0.1   | No Data  | 4.6      | 0     | 0.6                 | 13.7  | 0          | 1.6       | 83.5                                                                                        | 0.2      | 2.3      | 4.6      | 1.3        | 0.2      |







# **Technical Memorandum**

Date: November 5, 2020

To: John DeYoe, Project Manager, RWDI

From: Gioseph Anello, Director, Waste Management Services, Durham Region

Copy: L. McDowell, Director, Environmental Protection and Promotion Region, York Region

# Subject:Durham York Energy Centre (DYEC)2020 Ambient Air Q3 Sulphur Dioxide Emissions

In support of the 2020 Q3 Ambient Air Quality Monitoring Report prepared by RWDI Inc., the following information is provided in relation to the performance of the DYEC during the periods of elevated sulphur dioxide (SO<sub>2</sub>) concentrations observed at the facility's Courtice and Rundle Road ambient air monitoring stations.

The Emission Summary and Dispersion Modelling (ESDM) report submitted as part of the DYEC ECA Application modelled SO<sub>2</sub> concentrations at the maximum point of impingement (POI) for a facility operating at 110% maximum continuous rating (MCR) with in-stack SO<sub>2</sub> concentrations at the permit limit of 35 mg/m<sup>3</sup>. Under this conservative assumed facility operating condition the predicted maximum 1-hour average concentration at the POI was 8.62  $\mu$ g/m<sup>3</sup>, which represents 8.62% of the new ambient air standard of 100  $\mu$ g/m<sup>3</sup>, which was implemented in 2020.

According to the DYEC's continuous emissions monitoring system (CEMS), measured in-stack SO<sub>2</sub> stack concentrations were recorded at 0 mg/m<sup>3</sup> throughout the periods in Q3 2020 when ambient SO<sub>2</sub> standards were exceeded. At these measured in-stack concentration levels, the facility's contribution to ambient air quality would be expected to be less than 1% of the new standard.

John DeYoe, Project Manager, RWDI DYEC Ambient Air Q3 Sulphur Dioxide November 5, 2020 Page 2 of 2

In each instance where the Courtice station experienced an exceedance of either the 10 minute or 1 hour rolling average, the wind was found to be originating from an ESE, S and WSW directions. The DYEC is situated NE-ENE from the Courtice station. For every 10 minute and 1 hour period where the ambient standard was exceeded at the Courtice station, the DYEC was operational and the reported SO<sub>2</sub> CEMS in stack concentrations recorded 0 mg/Rm<sup>3</sup>.

In each instance where the Rundle Road station experienced an exceedance the wind was found to be originating from an ENE direction. Exceedances noted in the Q2 report were also found to have occurred when wind direction originated from the ENE direction. The DYEC is situated SW of the Rundle Road station. For every 10 minute and 1 hour period where the ambient standard was exceeded at the Rundle Road station, the DYEC was operational and the reported SO<sub>2</sub> CEMS in stack concentrations equal to or below 1 mg/Rm<sup>3</sup>.

Considering both the wind direction and the SO<sub>2</sub> concentrations measured in the stack, it is unlikely that the DYEC contributed significantly to elevated ambient SO<sub>2</sub> concentrations during these events. It is more likely that ambient concentrations were attributable to other industrial sources in the lakeshore area or long range transport from across Lake Ontario.