DURHAM YORK ENERGY CENTRE 2014 GROUNDWATER MONITORING

REPORT

Regional Municipality of Durham

Project No. 111-26648-00 April 2015 Distribution:

- 1 c Regional Municipality of Durham
- 1 c Regional Municipality of York
- 1 c Covanta
- 7 c Ministry of the Environment

WSP Canada Inc. 126 Don Hillock Drive, Unit 2 Aurora, Ontario L4G 0G9

Phone: +1 905-750-3080 Fax: +1 905-727-0463 www.wspgroup.com

April 27, 2015

Mr. Gioseph Anello, M.Eng., P.Eng., PMP Manager of Waste Planning and Technical Services Regional Municipality of Durham Works Department 605 Rossland Road East P.O. Box 623 Whitby, Ontario L1N 6A3

Subject: Durham York Energy Centre 2014 Groundwater Monitoring Report Project No. 111-26648-00-100-0414015

Dear Mr. Anello:

We are pleased to forward the 2014 Groundwater Monitoring Report for the Durham York Energy Centre. This hydrogeological report presents an assessment of the natural (baseline) groundwater characteristics of the site prior to, and during, the current construction phase of the facility. Comments provided by the Region have been incorporated into the report.

The groundwater monitoring program was completed in accordance with the program described in the *Durham York Energy Centre Groundwater and Surface Water Monitoring Plan*, prepared by Stantec Consulting Ltd, dated September 14, 2011. Our report includes groundwater elevation and chemical data collected during the monitoring events between December 2011 and October 2014. Findings are summarized in the conclusions and recommendations section, and technical information is appended.

In general, the existing groundwater characteristics are reflective of natural groundwater conditions site, and the construction activity has not adversely affected the on-site groundwater quality. The monitoring program outlined in the Groundwater and Surface Water Monitoring Plan should be continued into 2015.

WSP Canada Inc. 126 Don Hillock Drive. Unit 2 Aurora, Ontario L4G 4G9 www.wspgroup.com

Thank you for the opportunity to work on this study. If there are any questions, please contact us.

Yours truly, WSP Canada Inc.

Stephen J. Taziar, P.Eng. Senior Project Engineer

SJT:nah

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	OWNERSHIP AND KEY PERSONNEL	1
1.3	MOE LIAISON	2
1.4	OBJECTIVE AND SCOPE	3
1.5	METHODOLOGY	3
1.5.1	GROUNDWATER MONITOR INSTALLATIONS	3
1.5.2	SLUG TESTS HYDRAULIC RESPONSE TESTING	4
1.5.3	GROUNDWATER MONITORING	4
1.5.4	INTERPRETATION AND REPORTING	5
2	PHYSICAL SETTING	5
3	MONITORING RESULTS	6
3.1	QUALITY ASSURANCE/QUALITY CONTROL	6
3.2	GROUNDWATER QUALITY	6
3.2.1	FIELD CHEMICAL RESULTS	7
3.2.2	CONCENTRATION TRENDS	7
3.2.3	WATER QUALITY COMPLIANCE/REGULATORY CRITERIA	8
3.2.4	CONTINGENCY MEASURES	8
4	CONCLUSIONS AND RECOMMENDATIONS	8
4.1	CONCLUSIONS	8
4.2	RECOMMENDATIONS	9

TABLES

TABLE A-1	GROUNDWATER MONITOR DETAILS
TABLE A-2	GROUNDWATER ELEVATIONS
ITEM A-3	BOREHOLE LOGS
TABLE B-1	GROUNDWATER FIELD CHEMICAL RESULTS
TABLE B-2	GROUNDWATER CHEMICAL RESULTS
TABLE B-3	FIELD DUPLICATE SAMPLES – RELATIVE PERCENT DIFFERENCES
TABLE B-4	LABORATORY CERTIFICATES OF ANALYSIS

FIGURES

FIGURE 1-1	LOCATION MAP
FIGURE 1-2	SITE PLAN

FIGURES A-1 TO A-5GROUNDWATER HYDROGRAPHSFIGURES B-1 TO B-8TIME CONCENTRATION GRAPHS

APPENDICES

APPENDIX A	GROUNDWATER REGIME
APPENDIX B	GROUNDWATER CHEMISTRY
APPENDIX C	MOE CHECKLIST

1 INTRODUCTION

1.1 BACKGROUND

The Durham York Energy Centre is an energy from municipal solid waste facility constructed in the Municipality of Clarington, Ontario. The site property is located on the west side of Osborne Road, southeast of the Courtice Road and Highway 401 interchange, and north of the Courtice Water Pollution Control Plant and the CN Railway, as shown in Figure 1-1.

The water monitoring programs for the site were outlined in the *Durham York Energy Centre Groundwater and Surface Water Monitoring Plan*, prepared by Stantec Consulting Ltd, dated September 14, 2011, in accordance with Condition 20 of the Environmental Assessment (EA) for the site. To date, the groundwater monitoring component has been carried out by Genivar Inc. (now WSP Canada Inc.), and the surface water monitoring component has been carried out by Golder Associates. The Durham York Energy Centre is located upon approximately 12.1 hectares of rural land. The site layout is shown in the Site Plan, Figure 1-2.

1.2 OWNERSHIP AND KEY PERSONNEL

The owners of the site are:

The Regional Municipality of Durham Contact: Mirka Januszkiewicz, P. Eng Director, Waste Management

and

The Regional Municipality of York Contact: Laura McDowell, P.Eng. Director, Environmental Promotion and Protection

The Site Operator during the construction phase is:

Covanta Durham York Renewable Energy L.P. Contact: James Delaney Resident Construction Manager 72 Osborne Road Clarington, Ontario L1E 2R2 Main: (905) 433-4870 Direct: (905) 433-4872 Fax: (905) 433-4889 Email: jdelaney@CovantaEnergy.com

Assistant Site Coordinator: Dave Haldenby Email: dhaldenby@CovantaEnergy.com

The key contact person for environmental issues at the site is James Delaney, listed above.

The Certified Environmental Practitioners for the site include:

Groundwater -

WSP Canada Inc. Contact: Stephen J. Taziar, P.Eng Senior Project Engineer 126 Don Hillock Drive, Unit 2 Aurora, Ontario L4G 0G9 Phone: (905) 750-3080 Fax: (905) 727-0463 Email: stephen.taziar@wspgroup.com

and

Surface Water -

Terry Winhold, M.Eng., P.Eng. Senior Water Resources Engineer, Surface Water CEP 6925 Century Avenue, Suite 100 Mississauga, Ontario L5N 7K2 Phone: (905) 567-4444 Email: <u>twinhold@golder.com</u>

Golder Associates Contact: Steve Auger, M.Sc., P.Eng., C.P.E.S.C. (from May 28, 2012 to November 14, 2014) Water Resources Engineer, Surface Water CEP 140 Renfrew Drive, Suite 110 Markham, Ontario L3R 6B3 Phone: (905) 475-5591 (ext 6030) Fax: (905) 475-5257 Email: <u>Steve Auger@golder.com</u>

Jessica Hanschell, M.Env.Sc., EPt. (from November 14, 2014 to January 31, 2015) Water Resources Scientist, Surface Water CEP 1931 Robertson Road Ottawa, Ontario K2L 4G1 Phone: (613) 592-9600 ext. 3337 Email: Jessica Hanschell@golder.com

1.3 MOE LIAISON

As part of the ongoing activities on the subject site, the Owners (Regional Municipalities of Durham and York) and Covanta have been meeting with the Ministry of the Environment on-site, periodically, to review the status of construction, and assess potential affects to the surrounding environment.

Annual meetings have been held with the Regional Director to review the monitoring program, as required by Condition 20.3 in the ECA Notice of Approval.

1.4 OBJECTIVE AND SCOPE

The principal objectives of the 2014 annual water monitoring program are as follows.

- → To assess the baseline on-site groundwater characteristics as part of the pre-construction and construction phases.
- \rightarrow To assess the effects of the construction activity on local groundwater resources.
- → To assess the compliance of the groundwater quality with Ontario Drinking Water Quality Standards.
- → To assess the need for remedial measures.
- \rightarrow To determine if changes are required for the 2015 monitoring program.

The 2014 water monitoring program involves a data collection component and an analysis and interpretation component.

1.5 METHODOLOGY

1.5.1 GROUNDWATER MONITOR INSTALLATIONS

Six groundwater monitors at four Borehole Locations were installed on the subject site between December 19 and 21, 2011, in accordance with the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan. Drilling of the boreholes was undertaken by a soils drilling rig, and installation of the groundwater monitors was supervised in the field by WSP personnel. Single monitors were installed at Borehole Locations MW1 and MW4, and nests of two groundwater monitors were installed at Borehole Locations MW2 and MW3. During the soils drilling, split spoon samples were obtained and standard penetration tests were completed. This information was recorded in a project dedicated field book by the supervising field technician. Each groundwater monitor consists of 50 mm, Schedule 40, PVC and a 100mm x 100mm steel, lockable, protective casing.

Once the groundwater monitors were completed, dedicated high density polyethylene (HDPE) tubing, connected to inertial-lift sampling systems, were installed within each monitor. The monitors were subsequently purged to remove any water that may have been added during the drilling process, remove any fine-grained material within the monitor, and to establish a hydraulic connection with the surrounding insitu soils.

During 2013, the riser for Monitor MW4 was shortened in response to the construction of the East Stormwater Management Pond. The monitor shortening involved the removal of 2.6 metres of riser and reinstallation of the steel protective casing, in accordance with O. Reg. 903. Approximately 1.5 metres of the total riser were removed in June and the additional 1.1 metres of riser were removed in July 2013. The height adjustment of the monitor will not have an influence on the monitoring objectives for this location.

Monitors MW3A and MW3B were decommissioned in September 2013 due to infrastructure construction activities in the local area. These monitors were replaced in March 2014 by monitors designated as MW3A-R and MW3B-R, which were screened at the same approximate depths as the original monitors at MW3. Two additional groundwater monitors, designated MW5A and MW5B, were also installed within the central portion of the property in March 2014. Monitors MW5A/5B were installed in accordance with the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan, and will be included in future

groundwater sampling events. Monitors MW5A and MW5B were drilled to a depth of approximately 9 m and 6 m below grade, in accordance with the Monitoring Plan.

1.5.2 SLUG TESTS HYDRAULIC RESPONSE TESTING

Following the installation and development of the original six groundwater monitors, hydraulic response testing was undertaken to provide estimates of the horizontal hydraulic conductivity of the formation material surrounding the screened interval. Rising head tests (removing water and monitoring the change in water level) were conducted at each monitoring location. An assessment of the test results provided the following hydraulic conductivities:

- → MW1: 1.8 x 10-7 m/s
- → MW2A: 9.0 x 10-7 m/s
- → MW2B: 5.8 x 10-8 m/s
- → MW3A: 1.6 x 10-8 m/s
- → MW3B: 3.4 x 10-7 m/s
- → MW4: 8.0 x 10-7 m/s

These hydraulic conductivities are consistent with silt and till soils, and will be used for future assessments associated with groundwater flow velocities.

1.5.3 GROUNDWATER MONITORING

The established groundwater monitoring program for the site, as outlined in the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan requires the collection of groundwater samples from the on-site monitors three times per year, in the spring, summer, and fall. The measurement of groundwater levels at the monitoring locations was completed in conjunction with the groundwater sampling events on the following dates:

- → April 9, 2014 (MW1, MW2A, MW2B, and MW4, only)
- → June 18, 2014 (MW3A-R, MW3B-R, MW5A, and MW5B, only)
- → Aug 11, 2014 (the six on-site groundwater monitors)
- → October 29, 2014 (the six on-site groundwater monitors)

Prior to sampling, monitors were purged of at least three volumes of standing water, or were purged dry, using the dedicated inertial lift pump in accordance with established sampling protocols for this site and with industry standards. Samples were collected directly in bottles provided by the laboratory and submitted to AGAT Laboratories in Mississauga for analysis of the inorganic and metal parameters listed below, in accordance with the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan.

- → Carbonate
- Bicarbonate
- → Chloride
- → Sulphate
- → Calcium

5

- → Magnesium
- → Potassium
- → Sodium
- Boron
- → Cadmium
- → Cobalt
- → Lead
- → Mercury

Samples intended for metals analysis were filtered in the field using 0.45 micron in-line disposable filters. Groundwater samples were analysed in the field for pH, conductivity, temperature, and oxidation reduction potential.

AGAT Laboratories is accredited by the Canadian Association for Laboratory Accreditation (CALA) and the Standards Council of Canada (SCC).

1.5.4 INTERPRETATION AND REPORTING

Following collation of the database, a detailed analysis and interpretation of the data was completed. This component included the following items.

- → Preparation of time-concentration graphs
- → Statistical assessment
- → Interpretation of short-term surface water quality patterns and trends
- → Groundwater quality compliance with Ontario Drinking Water Quality Standards
- → Consideration of future monitoring

Results of the 2014 groundwater monitoring program with conclusions and recommendations are presented in this report.

2 PHYSICAL SETTING

The geologic setting has previously been described in previous reports, including the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan, prepared by Stantec Consulting Ltd. The Durham York Energy Centre is situated in the physiographic region of the Iroquois Plain, as described by Chapman & Putnam (1984). In the vicinity of the subject site, this region is comprised of silty lacustrine deposits and tills. The Stantec report indicates that the Durham York Energy Centre is underlain by Newmarket Till, which is a dense till comprised of clayey silt and sand till. The layer is estimated to be between 25 and 30 m deep, according to various references in the Stantec report.

The surficial soils on-site, as described in the borehole logs, Item A-3, Appendix A, are comparable to the soils described above. As shown in the borehole logs, the shallow soils on-site, to a depth of approximately 10 metres, include layers of sandy silt till, silt till, clayey silt, and silty sand. The varying thicknesses of the units generally range between 0.2 m and 4.5 m within the boreholes drilled in December 2011.

An interpretation of shallow groundwater flow direction is presented in Figure 1-2, based on the October 2014 water level elevations. As shown in the figure, shallow groundwater flow is in a general southwest direction.

It is noted that the groundwater elevations within the southeast portion of the site decreased during the November 2012 monitoring event, compared to the March 2012 event, in response to the construction of the East Stormwater Management Pond. This lowering of the water level elevation was exhibited at monitor MW4, which decreased approximately 1.8 metres between March and November 2014. Water level elevations within Monitor MW4 since the November 2012 event are similar to, but slightly higher than, the base elevation of the East Stormwater Management Pond. Future reports will include a reference to water level elevations within the pond, once water levels have stabilized.

Currently, the permanent outfall pipes for the SWM ponds discharge directly to the new receiving swale, south of the site and north of the CNR tracks, and have been online since late April 2014. Prior to this, the SWM ponds were discharged primarily by controlled pumping after a run-off event, or gravity discharged during significant rainfall run-off events.

The decrease in water levels adjacent to the stormwater management ponds is not unexpected, as this aspect was predicted in Section 2.2 of the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan. It is noted, however, that the localized influence of the stormwater management ponds on the shallow groundwater flow regime will not have an adverse influence on the shallow groundwater flow patterns for the areas around the site.

As shown in Figure A-1, Appendix A, the groundwater elevations noticeably decreased at monitor MW1 during the November 2013 and April 2014 sampling events. The decrease in water level elevations is attributed to excavation activities to the west of the subject property for the installation of trunk sewer infrastructure. The approximate location and configuration of the trunk sewer is shown in Figure 1-2. Continued monitoring will further assess the influence of the underground services, at this location, over the long term.

Groundwater levels within monitoring nests MW2 and MW3, as shown in Figures A-2 and A-3, indicate that the slight vertical hydraulic gradients are generally downwards, on-site.

3 MONITORING RESULTS

3.1 QUALITY ASSURANCE/QUALITY CONTROL

Duplicate groundwater samples were collected during the sampling events in 2014 as part of the QA/QC program. A summary of the results for the duplicate samples obtained during the April and October events is provided in Table B-3, Appendix B, along with the relative percent differences (RPD). It is considered that the results of samples for which the relative percent differences (RPD) are less than 20%, applied to parameter concentrations that are at least 5 times the Limit of Quantitation (LOQ), can generally be interpreted with confidence. As shown in the table, the RPD values were less than the 20% guideline for the duplicate samples. These results indicate that the laboratory values can be interpreted with confidence.

3.2 GROUNDWATER QUALITY

Based on the configuration of the groundwater flow system, Borehole Locations MW1 and MW2 are considered to be upgradient of the on-site buildings, and represent the background water quality for the site. Although water levels at Monitor MW1 have decreased during the past year, as outlined in Section 2,

this monitor remains suitable as a reference location since this monitor is not downgradient of the facility buildings. Continued monitoring will permit an assessment of the suitability for this monitor as a reference location in the future. Borehole Locations MW3, MW4 and MW5 are downgradient or cross-gradient from the facility buildings within the property boundary, and provide monitoring locations for assessment of potential future influences from on-site activities.

3.2.1 FIELD CHEMICAL RESULTS

A comparison of field and laboratory values indicates that the field pH and conductivity measurements were generally similar to the laboratory results. Any differences between field and laboratory values are attributed primarily to differences in the testing environment and analytical equipment.

3.2.2 CONCENTRATION TRENDS

The groundwater laboratory analytical results are summarized in Table B-2, Appendix B. The timeconcentration graphs for chloride, sodium, sulphate, calcium, magnesium, potassium, boron, and bicarbonate are provided in Figures B-1 to B-8, Appendix B. As shown in these figures, parameter concentrations for the groundwater monitors are generally constant over the short term, between December 2011 and October 2014, although the following patterns are noted.

- Within the nested monitors at Borehole Location MW2, concentrations for chloride, sodium, sulphate, calcium, magnesium, potassium and bicarbonate are generally higher within the shallow monitor, MW2B, compared to the deeper monitor MW2A; whereas boron concentrations were slightly higher at the deeper monitor compared to the shallow monitor, at this location.
- → Concentrations for chloride at monitor MW2B were relatively stable until the 2014 sampling events, which show an increasing trend. Given the close proximity to Osborne Road and the increased development in the area, the increased chloride concentrations are likely attributed to road salt effects. Continued monitoring will permit an assessment of the recent increases over the long term.
- → Within the nested monitors at Borehole Location MW3, concentrations for chloride, sodium, and boron are higher within the deeper monitor, MW3A, compared to the shallow monitor MW3B; whereas calcium, magnesium, and bicarbonate concentrations were higher within the shallow monitor compared to the deeper monitor, at this location. Concentrations for the analysed parameters at the replacement monitors, MW3A-R and MW3B-R are generally similar to the values within the original locations, although chloride and sodium concentrations within monitor MW3A-R are slightly lower compared to the original monitor.
- → Concentrations for chloride, magnesium, potassium, and bicarbonate vary over a larger range at Monitor MW4, compared to the other groundwater monitors installed on-site.

The variations in the groundwater chemistry between the groundwater monitoring locations, and at the two nested monitoring locations, is attributed to various factors including soil type that the monitors are screened in, off-site (upgradient) influences, and previous land uses at the site. Since groundwater movement through the various silty till soils will be relative slow, compared to a sandy soil, historical influences on the local groundwater quality from previous land uses on-site, and upgradient of the site, will be reflected in the groundwater quality that has been assessed, to date.

The chemical data collected between December 2011 and November 2014 will provide an initial baseline for future comparison of possible groundwater variances. The patterns listed above only provide an initial summary of early noticeable patterns at the specific sampling locations and do not indicate an adverse influence on the local shallow groundwater quality. It is noted that groundwater characteristics will vary

between sampling events, and the short term trends listed above are not an indication or a prediction of the future trend for parameter concentrations at this site.

3.2.3 WATER QUALITY COMPLIANCE/REGULATORY CRITERIA

The groundwater quality data indicate that concentrations satisfy the Ontario Drinking Water Quality Standards, as part of Ontario Regulation 169/03. These Standards are associated with health related parameters and are not associated with aesthetic objectives or operational guidelines.

As shown in Figure B-2, sodium concentrations generally ranged between 8 mg/L and 36 mg/L at the groundwater monitoring locations, although sodium concentrations at monitor MW3A ranged between 30 mg/L and 50 mg/L. These sodium concentrations satisfy the aesthetic objective for drinking water of 200 mg/L. As indicated in the Technical Support Document for the Ontario Drinking Water Standards, Objectives, and Guidelines, although the local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L, so that information can be communicated to local physicians for their use with patients on sodium restricted diets, the actual aesthetic objective for sodium is 200 mg/L. Although the laboratory certificates of analysis include the sodium concentrations of 20 and 200 mg/L for comparison, as shown in Table B-4, Appendix B, these values are comparison guidelines and are not drinking water Standards. It is noted that there are no groundwater users downgradient of the Durham York Energy Centre.

The parameter concentrations exhibited at the on-site groundwater monitors are considered to be representative of natural water quality conditions, or are associated with upgradient land uses, in place prior to the construction activities, and are not attributed to the on-site activities.

3.2.4 CONTINGENCY MEASURES

In accordance with Condition 17 of the Environmental Assessment Notice of Approval, a Spill Contingency and Emergency Response Plan has been developed for the site. The plan outlines the actions to be taken if on-site spills require groundwater sampling and established communications protocol between the Ministry, the Owners, and their consultants.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

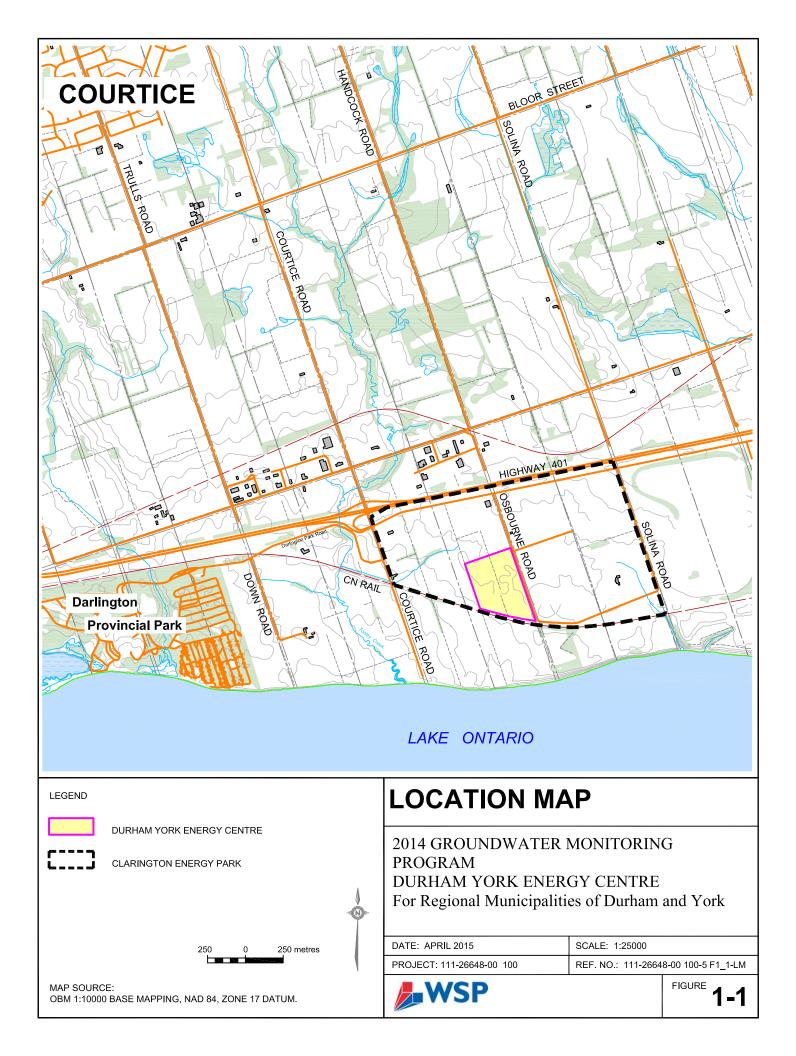
The following conclusions are based on the findings presented in this report.

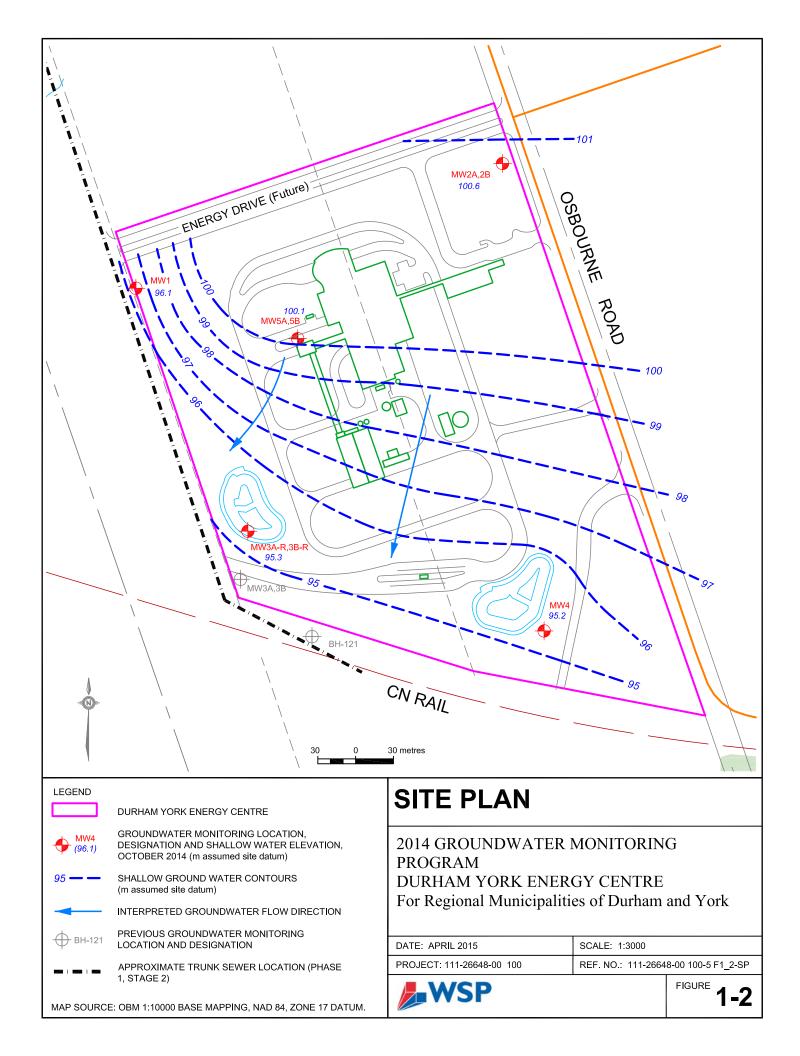
- → The local shallow groundwater flow is in a southwesterly direction, towards Lake Ontario.
- → Shallow groundwater elevations within the southeast portion of the site have lowered due to the construction of the East Stormwater Management Pond, and the on-site shallow groundwater flow will continue to be influenced by the presence of the stormwater management pond, but the shallow groundwater flow remains in a southwesterly direction. This groundwater response was predicted in the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan, and the localized influence from the stormwater management ponds is not expected to have an adverse influence on the shallow groundwater flow patterns in areas surrounding the site.

- → Shallow groundwater elevations within the northwest portion of the site have lowered due to the construction of the Courtice Trunk Sanitary Sewer, but the shallow groundwater flow remains in a southwesterly direction. The local influence from the sewer construction is not expected to have an adverse influence on the shallow groundwater flow patterns in the areas surrounding the site.
- → Groundwater quality at each monitoring location is influenced by various factors including the soil type that the monitor is screened in, and historical land uses at the site.
- → Groundwater quality within the groundwater monitors satisfies the Ontario Drinking Water Quality Standards for the parameters analysed.
- → The construction activities have not had an adverse influence on the shallow groundwater quality.

4.2 **RECOMMENDATIONS**

We respectfully submit the following recommendations based on the study findings for your consideration.


- → Pursuant to the Durham York Energy Centre Groundwater and Surface Water Monitoring Plan, the current groundwater monitoring program should be continued into 2015.
- \rightarrow No remedial measures, attributed to groundwater quality, are required at the present time.


Report Respectfully Submitted **WSP Canada Inc.**

Jordan J. Healey, C.Tech. Environmental Technician

Stephen U Taziar, P.Eng. Senior Project Engineer

Figures

Appendices

Appendix A

GROUNDWATER REGIME

TABLE A-1 GROUNDWATER MONITOR DETAILS DURHAM YORK ENERGY CENTRE - 2014 MONITORING PROGRAM

MONITOR				T.O.P.	GROUND	SCREENED	FILTER	BENTONITE SEAL	SURFACE
LOCATION	DESIGNATION	TYPE	DIAMETER (mm)	ELEVATION (mSD)	ELEVATION (mSD)	INTERVAL (mSD)	PACK (mSD)	(mSD)	SEAL (mSD)
MW1	1	S	51	102.32	101.29	95.19 - 93.67	95.50 - 93.67	101.29 - 95.50	
MW2	2B 2A	S P	51 51	103.08	102.01	97.46 - 95.94	97.77 - 95.94	102.01 - 97.77	
	2A	Р	51	103.03	102.01	94.39 - 92.87	94.69 - 92.82	102.01 - 94.69	
MW3	3B	S	51	96.31	95.28	90.76 - 89.23	91.06 - 89.23	95.28 - 91.06	
	3A	Ρ	51	96.22	95.17	87.63 - 86.10	87.93 - 86.10	93.95 - 87.93	95.17 - 93.95
	3B-r	S	51	99.16	98.31	93.81 - 91.86	94.06 - 91.86	98.31 - 94.06	
	3A-r	Ρ	51	99.11	98.36	90.74 - 89.22	91.35 - 89.22	98.36 - 91.35	
MW4	4	S	51	98.27	97.17	95.25 - 93.72	95.55 - 93.72	97.17 - 95.55	
MW5	5B	S	51	102.75	101.97	97.47 - 95.97	97.77 - 95.87	101.97 - 97.77	
	5A	Ρ	51	102.79	101.96	94.81 - 93.36	95.16 - 93.36	101.96 - 95.16	

NOTES: 1) mSD - metres Site Datum

2) T.O.P. - Top Of Pipe - used as the measuring point for water levels.

3) P - Piezometer

S - Standpipe

3) Top of Pipe Elevation for Monitor MW4 reflects elevation as of March 2013.

TABLE A-2
GROUNDWATER ELEVATIONS
DURHAM YORK ENERGY CENTRE - 2014 MONITORING PROGRAM

DATE	MW1	MW2A	MW2B	MW3A	MW3B	MW3A-R	MW3B-R	MW4	MW5A	MW5B
T.O.P. Elev>	102.32	103.03	103.08	96.22	96.31	99.16	99.11	98.27	102.75	102.79
28-Dec-11	100.62	100.18	99.98	* 89.20	94.50			97.17		
14-Mar-12	100.58	100.53	100.75	94.34	94.51			97.18		
21-Jun-12	99.76	100.06	100.22	94.26	94.11			96.51		
05-Nov-12	100.47	100.24	101.00	94.56	94.91			95.39		
22-Mar-13	100.50	100.22	100.79	94.50	94.59			95.44		
12-Jul-13	100.01	100.07	100.42	94.94	94.14			95.32		
09-Sep-13				94.33	94.22					
26-Nov-13	97.72	100.01	100.41					95.30		
09-Apr-14	94.34	100.22	101.46			93.52	92.40	95.26	100.18	100.58
18-Jun-14						95.07	95.34		100.27	100.26
11-Aug-14	95.96	99.98	100.64			94.98	95.04	94.83	100.13	100.12
29-Oct-14	96.09	99.99	100.56			95.12	95.31	95.19	100.10	100.08

NOTES: 1) All elevations are in mASD (metres above Site Datum).

2) T.O.P. - Top Of Pipe

3) * - Indicates water level elevation is not representative of groundwater characteristics and is excluded from interpretation.

FIGURE A-1 GROUND WATER HYDROGRAPH UPGRADIENT MONITORS : Borehole 1

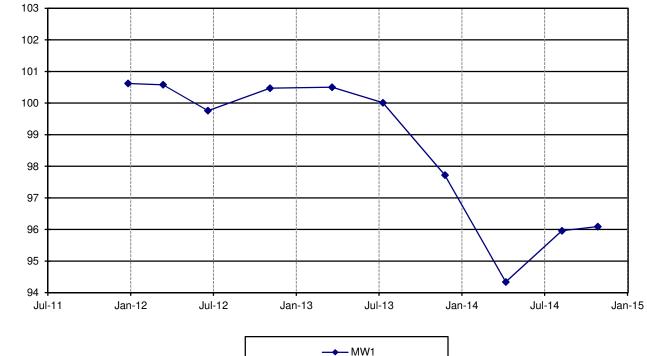
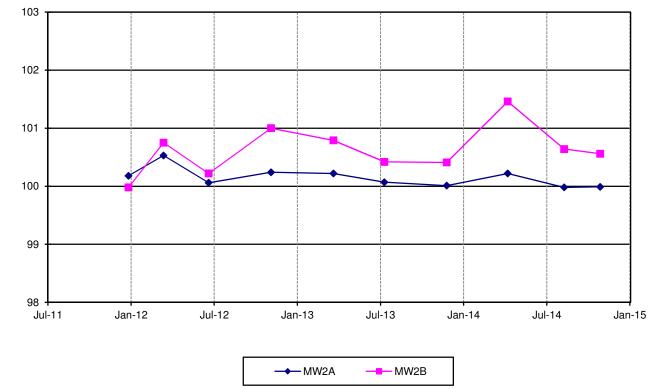



FIGURE A-2 GROUND WATER HYDROGRAPH UPGRADIENT MONITORS : Borehole 2

Water Level Elevation (mASL)

FIGURE A-3 GROUND WATER HYDROGRAPH DOWNGRADIENT MONITORS : Borehole 3

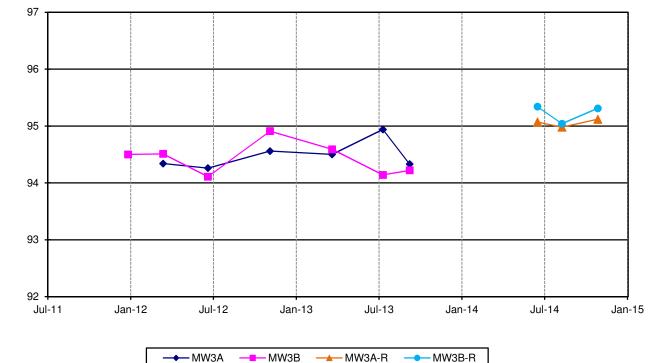
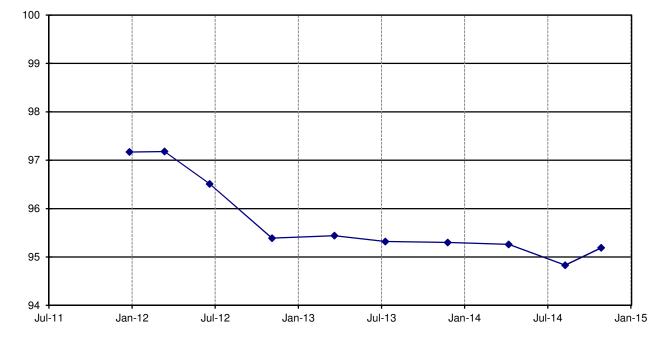
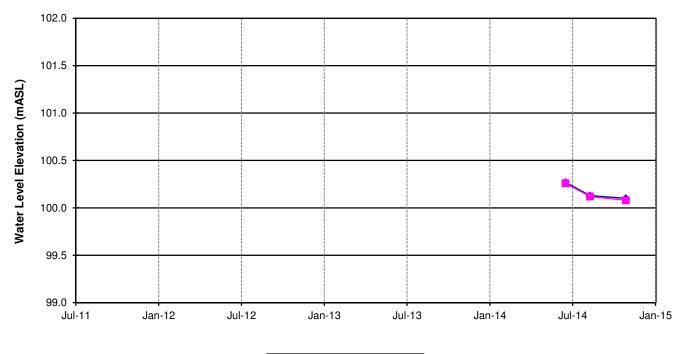



FIGURE A-4 GROUND WATER HYDROGRAPH DOWNGRADIENT MONITORS : Borehole 4



Water Level Elevation (mASL)

Water Level Elevation (mASL)

→ MW4

FIGURE A-5 GROUND WATER HYDROGRAPH DOWNGRADIENT MONITORS : Borehole 5

→ MW5A → MW5B

BOREHOLE LOG EXPLANATION FORM

This explanatory section provides the background to assist in the use of the borehole logs. Each of the headings used on the borehole log, is briefly explained.

DEPTH

This column gives the depth of interpreted geologic contacts in metres below ground surface.

STRATIGRAPHIC DESCRIPTION

This column gives a description of the soil based on a tactile examination of the samples and/or laboratory test results. Each stratum is described according to the following classification and terminology.

Soil Classification*		Terminology	Proportion
Clay Silt	<0.002 mm 0.002 to 0.06 mm	"trace" (e.g. trace sand)	<10%
Sand	0.06 to 2 mm	"some" (e.g. some sand)	10% - 20%
Gravel	2 to 60 mm	adjective (e.g. sandy)	20% - 35%
Cobbles Boulders	60 to 200 mm >200 mm	"and" (e.g. and sand) noun (e.g. sand)	35% - 50% >50%

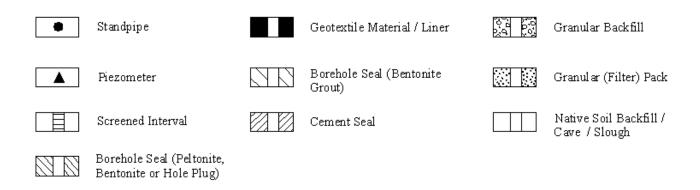
* Extension of MIT Classification system unless otherwise noted.

The use of the geologic term "till" implies that both disseminated coarser grained (sand, gravel, cobbles or boulders) particles and finer grained (silt and clay) particles may occur within the described matrix.

The compactness of cohesionless soils and the consistency of cohesive soils are defined by the following:

<u>COHES</u>	ONLESS SOIL	COHESIVE SOIL			
Compactness	Standard Penetration Resistance "N", Blows / 0.3 m	Consistency	Standard Penetration Resistance "N", Blows / 0.3 m		
Very Loose	0 to 4	Very Soft	0 to 2		
Loose	4 to 10	Soft	2 to 4		
Compact	10 to 30	Firm	4 to 8		
Dense	30 to 50	Stiff	8 to 15		
Very Dense	Over 50	Very Stiff	15 to 30		
		Hard	Over 30		

The moisture conditions of cohesionless and cohesive soils are defined as follows.


COHESIONLESS SOILS	9	COHESIVE SOILS		
Dry Moist Wet Saturated	DTPL APL WTPL MWTPL	- - -	Drier Than Plastic Limit About Plastic Limit Wetter Than Plastic Limit Much Wetter Than Plastic Limit	

STRATIGRAPHY

Symbols may be used to pictorially identify the interpreted stratigraphy of the soil and rock strata.

MONITOR DETAILS

This column shows the position and designation of standpipe and/or piezometer ground water monitors installed in the borehole. Also the water level may be shown for the date indicated.

Where monitors are placed in separate boreholes, these are shown individually in the "Monitor Details" column. Otherwise, monitors are in the same borehole. For further data regarding seals, screens, etc., the reader is referred to the summary of monitor details table.

SAMPLE

These columns describe the sample type and number, the "N" value, the water content, the percentage recovery, and Rock Quality Designation (RQD), of each sample obtained from the borehole where applicable. The information is recorded at the approximate depth at which the sample was obtained. The legend for sample type is explained below.

SS =	Split Spoon	GS =	Grab Sample
ST =	Thin Walled Shelby Tube	CS =	Channel Sample
AS =	Auger Flight Sample	WS =	Wash Sample
CC =	Continuous Core	RC =	Rock Core
% Recov	very = <u>Length of Core Recov</u>	vered Per Rur	<u>n</u> x 100

Total Length of Run

Where rock drilling was carried out, the term RQD (Rock Quality Designation) is used. The RQD is an indirect measure of the number of fractures and soundness of the rock mass. It is obtained from the rock cores by summing

measure of the number of fractures and soundness of the rock mass. It is obtained from the rock cores by summing the length of core recovered, counting only those pieces of sound core that are 100 mm or more in length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total length of core run. The classification based on the RQD value is given below.

TEST DATA

The central section of the log provides graphs which are used to plot selected field and laboratory test results at the depth at which they were carried out. The plotting scales are shown at the head of the column.

Dynamic Penetration Resistance - The number of blows required to advance a 51 mm diameter, 60° steel cone fitted to the end of 45 mm OD drill rods, 0.3 m into the subsoil. The cone is driven with a 63.5 kg hammer over a fall of 750 mm.

Standard Penetration Resistance - Standard Penetration Test (SPT) "N" Value - The number of blows required to advance a 51 mm diameter standard split-spoon sampler 300 mm into the subsoil, driven by means of a 63.5 kg hammer falling freely a distance of 750 mm. In cases where the split spoon does not penetrate 300 mm, the number of blows over the distance of actual penetration in millimetres is shown as <u>xBlows</u>

mm

Water Content - The ratio of the mass of water to the mass of oven-dry solids in the soil expressed as a percentage.

W_P - Plastic Limit of a fine-grained soil expressed as a percentage as determined from the Atterberg Limit Test.

W_L - Liquid Limit of a fine-grained soil expressed as a percentage as determined from the Atterberg Limit Test.

REMARKS

The last column describes pertinent drilling details, field observations and/or provides an indication of other field or laboratory tests that were performed.

BOREHOLE NO. MW1

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

SUPERVISOR: EWT

PROJECT NO.: 111-26648-00

DATE COMPLETED: Dec 20, 2011

GROUND ELEVATION: 101.3 m (Assumed Datum)

		STF			5	SAMPL			CONE PENETRATIC		WATER NTENT %	UTM CO-ORDINATES UTM Zone: <u>17</u> NAD: 83
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUI 10 20 30	Ξ) 20 30	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>680337</u> Northing: <u>4860451</u>
0.0	TOPSOIL: BROWN TO DARK BROWN, SANDY SILT, LOOSE.	<u>7/1</u> × -7								vv	<u> </u>	FROZEN TO 38 mm
0.3 —	SANDY SILT TILL: LIGHT GREY BECOMING BROWNISH GREY AT 4.6 m, SANDY SILT, SOME MEDIUM TO COARSE GRAVEL, TRACE CLAY, TRACE FINE GRAVEL			SS1	6		29					
	BETWEEN 4.6 m AND 4.9 m, MOIST, VERY DENSE.			SS2	24		100					
2.0				SS3	51		100			5 <u>1</u> ►		
3.0				SS4	84		100			34_►		
				SS5	105		100		1	0 <u>5</u>		
<u></u>				SS6	99		100		!	99 		
5.0				SS7	97		100			97		
5.3 —	SANDY SILT TILL: GREY, SANDY SILT, TRACE TO SOME CLAY, TRACE FINE TO MEDIUM GRAVEL, MOIST, COMPACT.			SS8	34		96			•		
5.0				SS9	25		92					
<u></u>				SS10	43		88			43		
<u>1.0</u>				SS11	21		83					
8.2	BOREHOLE TERMINATED AT 8.2 m IN SANDY SILT TILL.	<u> </u>	<u>999 60999 6</u>									
9.0												
0.0												

BOREHOLE NO. MW2A

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

PROJECT NO.: 111-26648-00

DATE COMPLETED: Dec 20, 2011

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

SUPERVISOR: EWT

GROUND ELEVATION: 102.0 m (Assumed Datum)

REVIEWER: SJT

									0015			
		STF			5	SAMPLI			CONE PENETRATION			UTM CO-ORDINATES UTM Zone: <u>17</u> NAD: <u>83</u>
DEPTH		STRATIGRAPHY	MONITOR		z	%	% R	- -	"N" VALUE		ENT %	Easting: <u>680628</u> Northing: <u>4860550</u>
(m)	STRATIGRAPHIC DESCRIPTION	GR/	DETAILS	TYPE	A	WA	ECC	RQD	10 20 30	10 2		Northing. <u>4000550</u>
		APH,		Гщ	N VALUE	% WATER	% RECOVERY	(%)				
0.0		~				~	RY		SHEAR STRENGTH	W _P	WL	REMARKS
0.2 —	TOPSOIL: DARK BROWN, SILT, SOME CLAY, MOIST.											
	CLAYEY SILT:	111		SS1	6		50		•			
	LIGHT GREY, TRACE FINE TO MEDIUM GRAVEL, DTPL TO APL, VERY STIFF.											
1.0				SS2	19		100					
2.0				SS3	22		100					
				SS4	17		100					
3.0 3.0 —												
	SILT TILL: LIGHT GREY BECOMING GREY AT 3.8 m, CLAYEY											
	SILT SOME FINE SAND TO SILT, SOME CLAY, SOME FINE SAND, SOME TO TRACE FINE TO MEDIUM			SS5	17		100					
	GRAVEL, MOIST, COMPACT.											
4.0												
				SS6	18		100					
5.0				SS7	16		100					
				SS8	13		100					
6.0												
0.0												
				SS9	9		100					
				308	9		100					
50 60 70 6.9 70 8.0 8.4 9.0 9.0 9.2 9.2 10.0	CLAYEY SILT: GREY, TRACE FINE TO MEDIUM GRAVEL, WTPL,											
5	GREY, TRACE FINE TO MEDIUM GRAVEL, WTPL, STIFF.			SS10	12		100					
				SS11	78		96		78			
8.0												
8.4 —				SS12								
0.4	SILT TILL: GREY, SOME FINE SAND, SOME CLAY, SOME			3312								REFUSAL OF SPOON AT 8.4 m
	MEDIUM TO COARSE GRAVEL, MOIST TO WET,											
9.0	DENSE.								70			
9.2 —				SS13	79		100		⁷⁹			SS12 N VALUE:
	BOREHOLE TERMINATED AT 9.2 m IN SILT TILL.											29 FOR 150 mm, 50 FOR 50 mm
GENIVAR	1			1		1	l					1

PAGE 1 of 1

BOREHOLE NO. MW2B

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: <u>111-26648-00</u> DATE COMPLETED: Dec 21, 2011

SUPERVISOR: EWT

GROUND ELEVATION: 102.0 m (Assumed Datum)

		Ŋ				S	SAMPL	E		CONE PENETRATION	WA	ATER	UTM CO-ORDINATES
DEPTH	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY		NITOR		z	% \	% RE	R	"N" VALUE	CON	FENT %	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>680631</u> Northing: <u>4860550</u>
(m)		GRAPH	DE	TAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)		10	20 30	_
0.0	TOPSOIL:	∼					ىر	RY		SHEAR STRENGTH	W _P	V	
0.2	DARK BROWN, SILT, SOME CLAY, MOIST.	Ī			SS1	6		50		•			GEOLOGIC DETAILS AND N VALUES ARE FROM BOREHOLE MW2A.
	LIGHT GREY, TRACE FINE TO MEDIUM GRAVEL, DTPL TO APL, VERY STIFF.												
1.0					000	10		400					
					SS2	19		100					
2.0					SS3	22		100		+			
					SS4	17		100		+			
3.0													
0.0	SILT TILL: LIGHT GREY BECOMING GREY AT 3.8 m, CLAYEY SILT SOME FINE SAND TO SILT, SOME CLAY, SOME				SS5	17		100					
	FINE SAND, SOME TO TRACE FINE TO MEDIUM GRAVEL, MOIST, COMPACT.												
4.0													
					SS6	18		100		†			
<u>5.0</u>					SS7	16		100		+			
DT 4/3													
ASIC.G					SS8	13		100					
AB SM 6.0													
GERH	BOREHOLE TERMINATED AT 6.1 m IN SILT TILL.												
45. ℃ 7.0													
8-00 10													
1-2664													
₩ <u>8.0</u>													
M) M													
В 9.0 ОО													
BEOLC													
GENIVAR GEOLOGIC BW (M) WITH UTM 111-26648-00 100-3 GPJ JAGGER HIMS BASIC GDT 4/30/13 00 011 00 00 00 00 00 00 00 00 00 00 00													
GENIVAR													

BOREHOLE NO. MW3A

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: 111-26648-00

DATE COMPLETED: Dec 19, 2011

SUPERVISOR: EWT

GROUND ELEVATION: 95.2 m (Assumed Datum)

		STR			:	SAMPLI			CONE PENETRATION		TER ENT %	UTM CO-ORDINATES UTM Zone: <u>17</u> NAD: <u>83</u>
DEPTH (m)		STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	10 2	0 30	Easting: <u>680420</u> Northing: <u>4860220</u> REMARKS
.0	2 <u>TOPSOIL:</u> DARK BROWN, SANDY SILT, TRACE CLAY, MO	<u>7/ 1/2</u>							STRENGTH	W _P	WL	FROZEN TO 90 mm
.0	LOOSE. SANDY SILT TILL: LIGHT BROWN TO BROWN, FINE SAND AND SOME CLAY, TO SANDY SILT, SOME CLAY, TF TO SOME GRAVEL, MOIST, COMPACT.			SS1 SS2	6		38 75		•			
				SS3	33		92					
.0 2.1 2.3	SILLY SAND:	TED,							43			
.03.3	BROWN BECOMING GREY AT 3.3 m, FINE S AND SILT, SOME CLAY, TO SANDY SILT, S CLAY, MOIST, LOOSE TO COMPACT.			SS4	43		88		-			
I.0	GREY, SILT: GREY, SILTY CLAY TO CLAYEY SILT, TRACE SOME GRAVEL, WTPL, SOFT TO FIRM.	ЕТО		SS5	12		100		-			
				SS6	13		100		+			
5.0	3			SS7	5		100					
6.0	SANDY SILT TILL: GREY, SILT AND SAND SOME CLAY, TO SA SILT, SOME GRAVEL, TRACE TO SOME CLAY, V LOOSE TO COMPACT.			SS8	10		96					
				SS9	15		83					
7.0				SS10	8		54					
3.0				SS11	8		83					
9.0				SS12	13		79					
			ľ	SS13	13		75		•			
9.8	BOREHOLE TERMINATED AT 9.8 m IN SANDY	SILT		1								

BOREHOLE NO. MW3B

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: 111-26648-00

DATE COMPLETED: Dec 19, 2011

SUPERVISOR: EWT

GROUND ELEVATION: 95.3 m (Assumed Datum)

		STF			5	SAMPLI		1	PENET	ONE RATION		TER ENT %	UTM CO-ORDINATES UTM Zone: <u>17</u> NAD: <u>83</u>
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)		∕ALUE 20 30		ENT %	Easting: <u>680421</u> Northing: <u>4860220</u>
0.0		<u>71 1</u> 4				,-	ŶŶ		STRE	NGTH	W _P	WL	REMARKS GEOLOGIC DETAILS AND N
0.2 —	DARK BROWN, SANDY SILT, TRACE CLAY, MOIST, LOOSE. SANDY SILT TILL:			SS1	6		38		•				VALUES ARE FROM BOREHOL MW3A.
1.0	LIGHT BROWN TO BROWN, FINE SAND AND SILT, SOME CLAY, TO SANDY SILT, SOME CLAY, TRACE TO SOME GRAVEL, MOIST, COMPACT.			SS2	6		75						
2.1 —	SILTY SAND;			SS3	33		92						
2.3 —	LIGHT BROWN, TRACE CLAY, SATURATED, COMPACT. SANDY SILT TILL: BROWN BECOMING GREY AT 3.3 m, FINE SAND AND SILT, SOME CLAY, TO SANDY SILT, SOME CLAY, MOIST, LOOSE TO COMPACT.			SS4	43		88			43			
3.3 —	CLAYEY SILT: GREY, SILTY CLAY TO CLAYEY SILT, TRACE TO SOME GRAVEL, WTPL, SOFT TO FIRM.			SS5	12		100		Ý				
.0				SS6	13		100		+				
5.0				SS7	5		100						
5.3 —	SANDY SILT TILL: GREY, SILT AND SAND SOME CLAY, TO SANDY SILT, SOME GRAVEL, TRACE TO SOME CLAY, WET, LOOSE TO COMPACT.			SS8	10		96						
6.0 —	BOREHOLE TERMINATED AT 6.0 m IN SANDY SILT TILL.		<u> 오파</u> 프 오파										
7.0													
3.0													
9.0													

BOREHOLE NO. MW4

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

SUPERVISOR: EWT REVIEWER: SJT

PROJECT NO.: 111-26648-00

DATE COMPLETED: Dec 21, 2011

GROUND ELEVATION: 99.8 m (Assumed Datum)

			1							_	-		
			ST				SAMPLI	E		CONE PENETRATION	WATER		UTM CO-ORDINATES
	PTH		STRATIGRAPHY	MONITOR		7	%	% R	-	"N" VALUE	CONTENT	- %	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>680661</u> Northing: <u>4860179</u>
	(m)	STRATIGRAPHIC DESCRIPTION	GRA	DETAILS	TYPE	N VALUE	% WATER	ECO	RQD (%)	10 20 30	10 20 3	0	Norumig. <u>4800179</u>
			PHY		т	Ē	Ē	% RECOVERY	(%)	SHEAR	H		REMARKS
0.0		TOPSOIL:	<u>x17</u>					~		STRENGTH	W _P	WL	_
	0.2 —	DARK BROWN, SANDY SILT, MOIST, LOOSE.			SS1	26		38		•			
		DARK BROWN, SANDY SILT TO SILT AND SAND,											
		SOME GRAVEL, TRACE CLAY, MOIST, COMPACT.											
1.0					SS2	27		85					
					002	2		00		Ī			
	1.5 —												
	-	<u>Sandy Silt:</u> Dark grey to light grey, some to trace											
2.0		CLAY, TRACE FINE TO MEDIUM GRAVEL, MOIST, COMPACT.			SS3	19		100					
	2.3 —												
	2.3	<u>SANDY SILT TILL:</u> GREY BECOMING DARK GREY AT 4.6 m, SOME			SS4	69		100		69			
		GRAVEL, SOME TO TRACE CLAY, MOIST BECOMING MOIST TO WET AT 6.1 m, VERY DENSE.			334	09		100					
3.0													
					SS5	67		100		6 <u>7</u>			SS5 N VALUE: 67 FOR 150 mm
4.0					SS6	70		100		7 <u>0</u>			SS6 N VALUE:
4.0													70 FOR 150 mm
					SS7	95		100		95			SS7 N VALUE:
,					00/			100					45 FOR 150 mm, 50 FOR 25 mm
5.0													
													SS8 N VALUE:
5					SS8	89		100		89			39 FOR 150 mm, 50 FOR 125 mm
2 i													
6.0													
	6.4				SS9	105		100		105			SS9 N VALUE: 55 FOR 150 mm, 50 FOR 125 mm
	6.4	BOREHOLE TERMINATED AT 6.4 m IN SANDY SILT TILL.											
<u></u>													
7.0													
2													
í 													
8.0													
5 9.0													
10.0													
	TATAD		•	•		•							

PAGE 1 of 1

GENIVAR GEOLOGIC B/W (M) WITH UTM 111-26648-00 100-3.GPJ JAGGER HIMS BASIC.GDT 4/30/13 10.0 **GENIVAR**

WSP

BOREHOLE NO. MW3A-r

PAGE 1 of 1

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: 111-26648-00 100

DATE COMPLETED: Mar 21, 2014

SUPERVISOR: EWT

GROUND ELEVATION: 98.3 m (Relative to Local Benchmark)

					S	SAMPLI	E		CONE PENETRATION			UTM CO-ORDINATES
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	WA ⁻ CONTI 10 2		UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>680418</u> Northing: <u>4860247</u>
0.0		7				U.	RY		SHEAR STRENGTH	W _P	WL	REMARKS
0.6	EILL: GREYISH BROWN, SANDY SILT, TRACE GRAVEL, ORGANICS, MOIST.			SS1	28		38					
1.0	CLAYEY SILT: GREYISH BROWN, BECOMING LIGHT GREY AT 2.9 m, TRACE GRAVEL, DTPL BECOMING APL AT 1.4 m, STIFF TO VERY STIFF, BECOMING HARD AT 2.9 m.			SS2	20		44					
2.0				SS3	12		92					
				SS4	42		71		42			
3.0				SS5	50		63		50			
4.0 4.4 —	SANDY SILT: LIGHT GREY, TRACE FINE TO COARSE GRAVEL, MOIST, VERY DENSE.			SS6	82		60		82			
5.0	CLAYEY SILT: LIGHT GREY, TRACE GRAVEL, TRACE COBBLES, DTPL, HARD BECOMING STIFF AT 7.2 m.			SS7	67		63		6 <u>7</u>			
6.0				SS8	53		67		53_			
				SS9	35		50					
7.0				SS10	12		38					
8.0				SS11	13		40					
8.8	BOREHOLE TERMINATED AT 8.8 m IN CLAYEY SILT.			SS12	7		81					
7.0 8.0 9.0 10.0												
0.0												

WSP

BOREHOLE NO. MW3B-r

PAGE 1 of 1

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: 111-26648-00 100

DATE COMPLETED: Mar 21, 2014

SUPERVISOR: EWT

GROUND ELEVATION: 98.4 m (Relative to Local Benchmark)

			(0			5	SAMPLI	=		CONE PENETRATION	10/07		UTM CO-ORDINATES
DEPTH (m)	н	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONIT DETAI	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30		ENT %	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>680418</u> Northing: <u>4860248</u>
0.0			РНҮ		Π	UE	ĒŖ	VERY	%)	SHEAR STRENGTH	⊢ W _P		REMARKS
0.6		EILL: GREVISH BROWN, SANDY SILT, TRACE GRAVEL, ORGANICS, MOIST.			SS1	28		38		ſ			
1.0		CLAYEY SILT: GREVISH BROWN, BECOMING LIGHT GREY AT 2.9 m, TRACE GRAVEL, DTPL BECOMING APL AT 1.4 m, STIFF TO VERY STIFF, BECOMING HARD AT 2.9 m.			SS2	20		44					
2.0					SS3	12		92					
3.0					SS4	42		71		42			
					SS5	50		63		50_			
4.0 4.4		<u>Sandy Silt:</u> Light Grey, trace fine to coarse gravel, Moist, very dense.			SS6	82		60		82			
5.0		<u>CLAYEY SILT:</u> LIGHT GREY, TRACE GRAVEL, TRACE COBBLES, DTPL, HARD.			SS7	67		63		67_ •			
6.0 6.7 7.0 8.0 9.0 10.0					SS8	53		67		5 <u>3</u>			
6.7		BOREHOLE TERMINATED AT 6.7 m IN CLAYEY SILT.			SS9	35		50		-			
7.0		BORCHOLE TERMINALED AT 0.7 III IN CEALET SILT.											
8.0													
9.0													
10.0													

WSP

BOREHOLE NO. MW5A

PAGE 1 of 1

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: 111-26648-00 100 DATE COMPLETED: Mar 22, 2014

GROUND ELEVATION: 102.0 m (Relative to Local Benchmark)

SUPERVISOR: EWT REVIEWER: SJT

		STR				5	SAMPL			CONE PENETRATION		TER ENT %	UTM CO-ORDINATES UTM Zone: <u>17</u> NAD: <u>83</u>
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS		TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30		20 30	Easting: <u>680474</u> Northing: <u>4860412</u>
0.0		_ ≺					~	RY		SHEAR STRENGTH	W _P	WL	REMARKS
0.6 —	FILL: GREY, CLAYEY SILT, TRACE SAND, STIFF, MOIST.				SS1	31		73		•			
.0	CLAYEY SILT: DARK GREY, TRACE GRAVEL, DTPL, VERY STIFF BECOMING HARD AT 1.4 m.				SS2	25		96					
2.0					SS3	81		77		81			
.0 2.9	SILTY SAND:				SS4	94		25		94			
	BROWNISH GREY, TRACE MEDIUM TO COARSE GRAVEL, TRACE COBBLES, DENSE TO VERY DENSE.				SS5	30		17		<			
.0					SS6	105		67		10 <u>5</u>			
4.4 —	CLAYEY SILT: GREY, SOME TO TRACE GRAVEL, TRACE COBBLES AT 5.9 m, WTPL TO APL.				SS7	88		46		88			
5.0					SS8	95		42		9 <u>5</u>			
					SS9	127		50		12 <u>7</u>			
<u></u>					SS10	77		31		77			
<u>.0</u>					SS11	58		27		67			
9.0 9.0	BOREHOLE TERMINATED AT 9.0 m IN CLAYEY SILT.				SS12			0					
0.0													

WSP

BOREHOLE NO. MW5B

PAGE 1 of 1

PROJECT NAME: DURHAM-YORK ENERGY CENTRE

CLIENT: REGIONAL MUNICIPALITY OF DURHAM

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

PROJECT NO.: 111-26648-00 100

DATE COMPLETED: Mar 22, 2014

SUPERVISOR: EWT

GROUND ELEVATION: 102.0 m (Relative to Local Benchmark)

REVIEWER: SJT

		STF			1	SAMPLI		1	CONE PENETRATION			UTM CO-ORDINATES
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	10 : 	ENT %	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>680470</u> Northing: <u>4860403</u>
0.0	50.1.	$\overline{\times}$				~	RY		SHEAR STRENGTH	W _P	WL	REMARKS
	EILL: GREY, CLAYEY SILT, TRACE SAND, STIFF, MOIST.			SS1	31		73		•			
0.6 —	CLAYEY SILT: DARK GREY, TRACE GRAVEL, DTPL, VERY STIFF BECOMING HARD AT 1.4 m.			SS2	25		96					
2.0				SS3	81		77		81			
3.0 2.9 —				SS4	94		25		94			
	<u>SILTY SAND:</u> BROWNISH GREY, TRACE MEDIUM TO COARSE GRAVEL, TRACE COBBLES, DENSE TO VERY DENSE.			SS5	30		17					
.0				SS6	105		67		10 <u>5</u>			
4.4 —	CLAYEY SILT: GREY, SOME TO TRACE GRAVEL, TRACE COBBLES AT 5.9 m, WTPL TO APL.			SS7	88		46		88			
5.0				SS8	95		42		9 <u>5</u>			
6.4 —	BOREHOLE TERMINATED AT 6.4 m IN CLAYEY SILT.			-								
<u>.0</u> 3.0 0.0												
0.0												
0.0												

Appendix B

GROUNDWATER CHEMISTRY

MONITORING	EVENT	Temperature	рН	Conductivity	Turbidity	ORP
LOCATION	EVENI	(°°)	(as units)	(µS/cm)	(NTU)	(mV)
MW1	Apr-14 Aug-14 Oct-14	8.3 12.2 11.1	6.7 7.8 7.2	782 704 749	>1000 >1000 >1000	131 -118
MW2A	Apr-14 Aug-14 Oct-14	8.5 13.7 10.9	6.8 8.4 7.3	413 408 438	>1000 530 >1000	-90 120
MW2B	Apr-14 Aug-14 Oct-14	7.5 12.4 11.6	6.5 8.0 7.1	626 658 755	540 293 764	-108 122
MW3A-R	Jun-14 Aug-14 Oct-14	10.6 13.7 11.7	8.2 8.4 7.7	317 288 323	491 583 687	113 84
MW3B-R	Jun-14 Aug-14 Oct-14	10.5 13.2 12.6	7.9 8.0 7.5	580 548 582	206 237 504	-113 91
MW4	Apr-14 Aug-14 Oct-14	5.1 16.2 13.0	7.3 7.9 7.5	578 625 634	208 190 >1000	-15 -70
MW5A	Jun-14 Aug-14 Oct-14	10.1 12.3 10.7	8.1 8.3 7.4	404 372 52	836 177 >1000	118 100
MW5B	Jun-14 Aug-14 Oct-14	9.5 14.3 11.9	8.1 8.2 7.3	598 584 626	383 904 >1000	-115 114

NOTES: 1) ORP - Oxidation Reduction Potential

2) Blank indicates measurement not obtained

PARAMETER	UNIT	ODWQS ¹					MW	/1				
PARAMETER	UNIT	ODWQS	Dec-11	Mar-12	Jun-12	Nov-12	Mar-13	Jul-13	Nov-13	Apr-14	Aug-14	Oct-14
Bicarbonate	mg/L		240	244	243	214	226	228	241	223	262	244
Carbonate	mg/L		<5	<5	<5	6	<5	<5	<5	<5	<5	<5
Chloride	mg/L	250	14.9	15.0	13.5	15.3	14.8	14.6	13.4	13.5	15.0	15.3
Sulphate	mg/L	500	152	153	131	147	127	129	132	227	151	150
Calcium	mg/L		83.0	68.8	67.7	73.9	73.8	65.3	65.5	90.7	70.4	69.1
Magnesium	mg/L		46.2	44.4	45.5	50.1	53.2	46.0	43.6	62.2	50.1	47.8
Potassium	mg/L		2.99	2.99	3.10	3.55	3.28	2.71	2.98	4.32	3.80	3.74
Sodium	mg/L	200	10.3	8.3	8.1	8.5	10.2	8.6	10.0	9.6	13.4	13.0
Boron	mg/L	5 *	0.019	0.015	0.014	0.016	0.012	0.023	0.015	0.014	0.012	0.015
Cadmium	mg/L	0.005 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L		0.002	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.01 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

NOTES: 1) ODWQS - Ontario Drinking Water Quality Standards, Objectives, and Guidelines (2006).

PARAMETER	UNIT						MW	'2A				
PARAMETER	UNIT	ODWQS ¹	Dec-11	Mar-12	Jun-12	Nov-12	Mar-13	Jul-13	Nov-13	Apr-14	Aug-14	Oct-14
Bicarbonate	mg/L		221	215	195	168	188	190	206	185	180	188
Carbonate	mg/L		<5	<5	<5	7	<5	<5	<5	<5	<5	<5
Chloride	mg/L	250	4.7	3.2	1.8	4.0	1.9	2.7	2.5	3.3	4.5	4.5
Sulphate	mg/L	500	72.9	45.7	21.2	28.8	15.6	18.9	21.8	25.1	27.5	26.3
Calcium	mg/L		48.3	27.3	18.4	19.5	17.9	15.4	16.5	15.8	16.6	15.1
Magnesium	mg/L		32.0	31.3	32.2	35.5	37.5	32.3	30.6	33.6	30.0	30.6
Potassium	mg/L		2.31	2.20	1.62	1.80	1.75	1.34	1.51	1.52	1.42	1.30
Sodium	mg/L	200	23.5	16.8	14.6	17.3	17.6	15.2	18.7	24.7	25.9	25.2
Boron	mg/L	5 *	0.088	0.081	0.090	0.097	0.096	0.106	0.104	0.106	0.108	0.117
Cadmium	mg/L	0.005 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L		0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.01 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

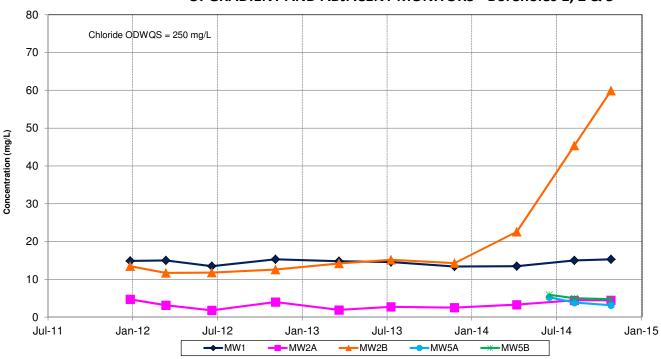
NOTES: 1) ODWQS - Ontario Drinking Water Quality Standards, Objectives, and Guidelines (2006).

PARAMETER	UNIT	ODWQS ¹					MW	2B				
PARAMETER	UNIT	ODWQS	Dec-11	Mar-12	Jun-12	Nov-12	Mar-13	Jul-13	Nov-13	Apr-14	Aug-14	Oct-14
Bicarbonate	mg/L		235	244	252	220	242	241	248	224	236	238
Carbonate	mg/L		<5	<5	<5	8	<5	<5	<5	<5	<5	<5
Chloride	mg/L	250	13.5	11.7	11.8	12.6	14.2	15.2	14.3	22.6	45.4	59.9
Sulphate	mg/L	500	98.8	120	93.6	99.4	84.9	82.2	77.3	84.0	78.1	80.2
Calcium	mg/L		58.7	49.7	45.6	48.1	46.2	40.8	39.4	43.6	44.7	45.8
Magnesium	mg/L		34.8	42.3	44.2	49.5	54.5	46.8	44.2	52.2	52.3	53.2
Potassium	mg/L		1.09	1.67	1.81	2.20	2.23	1.82	2.03	2.02	2.04	2.00
Sodium	mg/L	200	29.1	24.0	20.7	20.4	21.9	18.5	19.3	22.5	22.5	24.5
Boron	mg/L	5 *	0.076	0.077	0.078	0.087	0.082	0.086	0.083	0.076	0.077	0.080
Cadmium	mg/L	0.005 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L		0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.01 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

NOTES: 1) ODWQS - Ontario Drinking Water Quality Standards, Objectives, and Guidelines (2006).

PARAMETER	UNIT					MW3A					MW3A-R	
FANAMETEN	UNIT	ODWQS ¹	Dec-11	Mar-12	Jun-12	Nov-12	Mar-13	Jul-13	Sep-13	Jun-14	Aug-14	Oct-14
Bicarbonate	mg/L		181	153	147	130	124	121	151	134	120	123
Carbonate	mg/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloride	mg/L	250	22.7	24.6	24.4	26.3	25.1	23.8	26.2	7.5	6.5	6.2
Sulphate	mg/L	500	125	78.7	50.7	44.0	29.3	23.0	20.3	27.4	20.7	21.4
Calcium	mg/L		76.9	43.8	34.3	27.9	26.4	22.5	24.4	22.0	19.4	16.0
Magnesium	mg/L		11.5	9.92	9.13	8.95	8.76	6.68	6.91	9.27	8.73	8.74
Potassium	mg/L		1.79	1.79	1.33	1.86	1.25	1.09	2.94	2.34	2.09	1.41
Sodium	mg/L	200	47.5	45.3	43.0	46.0	49.6	40.8	44.7	35.1	35.7	34.5
Boron	mg/L	5 *	0.129	0.164	0.171	0.182	0.175	0.172	0.169	0.132	0.139	0.155
Cadmium	mg/L	0.005 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L		0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.01 *	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

NOTES: 1) ODWQS - Ontario Drinking Water Quality Standards, Objectives, and Guidelines (2006).


PARAMETER	UNIT	ODWQS ¹				MW3B					MW3B-R	
PARAMETER	UNIT	ODWQS	Dec-11	Mar-12	Jun-12	Nov-12	Mar-13	Jul-13	Sep-13	Jun-14	Aug-14	Oct-14
Bicarbonate	mg/L		247	212	211	186	213	202	235	198	209	203
Carbonate	mg/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloride	mg/L	250	10.8	10.2	10.7	12.5	15.6	13.9	18.8	15.4	12.3	10.7
Sulphate	mg/L	500	102	58.6	52.4	45.8	33.9	39.9	43.4	103.0	88.7	85.7
Calcium	mg/L		78.4	49.7	47.9	49.3	55.5	46.8	61.4	58.3	46.8	47.7
Magnesium	mg/L		22.4	19.9	20.2	21.7	26.4	21.2	25.1	31.4	29.2	29.3
Potassium	mg/L		2.00	1.42	1.55	1.99	1.59	1.38	2.39	5.92	4.62	4.04
Sodium	mg/L	200	35.5	25.5	25.7	26.2	26.4	24.1	27.1	25.1	23.8	23.9
Boron	mg/L	5 *	0.071	0.079	0.088	0.092	0.073	0.095	0.082	0.118	0.095	0.115
Cadmium	mg/L	0.005 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.01 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

NOTES: 1) ODWQS - Ontario Drinking Water Quality Standards, Objectives, and Guidelines (2006).

PARAMETER	UNIT	opwoo 1					MV	/4						MW5A			MW5B	
PARAMETER	UNIT	ODWQS ¹	Dec-11	Mar-12	Jun-12	Nov-12	Mar-13	Jul-13	Nov-13	Apr-14	Aug-14	Oct-14	Jun-14	Aug-14	Oct-14	Jun-14	Aug-14	Oct-14
Bicarbonate	mg/L		300	430	506	346	330	448	496	301	353	300	207	199	183	240	247	234
Carbonate	mg/L		<5	<5	<5	8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloride	mg/L	250	12.3	14.5	7.1	12.0	8.2	7.5	6.8	8.6	8.5	12.2	5.3	3.9	3.2	5.9	5.0	4.8
Sulphate	mg/L	500	50.8	47.5	47.8	60.8	38.5	62.6	62.6	23.8	31.8	32.1	16.9	11.0	5.6	96.4	91.4	95.9
Calcium	mg/L		42.7	36.4	43.1	45.9	42.2	44.7	39.0	29.0	31.9	31.3	25.2	19.4	17.4	41.2	34.4	36.2
Magnesium	mg/L		51.5	72.8	88.2	68.2	68.8	83.6	83.9	54.9	62.0	53.8	34.9	31.7	31.0	56.7	52.3	52.6
Potassium	mg/L		4.39	2.45	2.70	6.08	2.81	3.55	3.61	2.30	2.73	2.63	3.83	2.89	2.82	4.37	3.76	3.51
Sodium	mg/L	200	22.0	25.5	28.0	23.1	23.7	28.6	35.8	22.2	25.5	22.0	12.2	11.2	11.4	10.2	10.1	10.2
Boron	mg/L	5 *	0.057	0.061	0.066	0.057	0.038	0.064	0.066	0.040	0.051	0.051	0.054	0.045	0.049	0.045	0.048	0.053
Cadmium	mg/L	0.005 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L		0.002	<0.001	0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.01 *	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	mg/L	0.001 *	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001

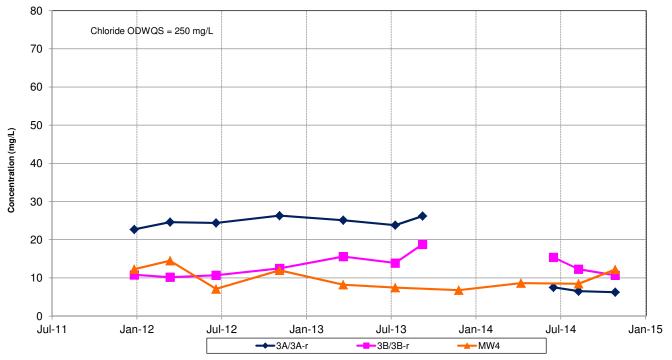
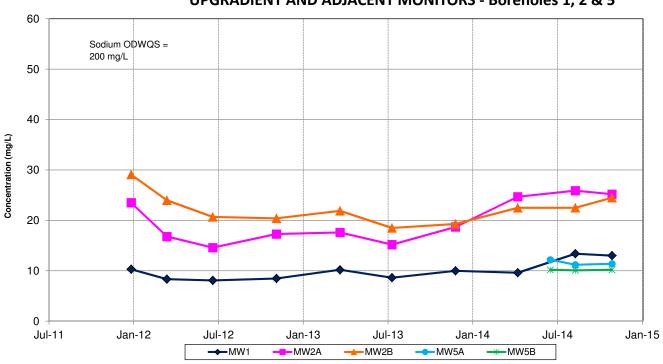

NOTES: 1) ODWQS - Ontario Drinking Water Quality Standards, Objectives, and Guidelines (2006).

FIGURE B-1 GROUNDWATER TIME CONCENTRATION GRAPHS - CHLORIDE

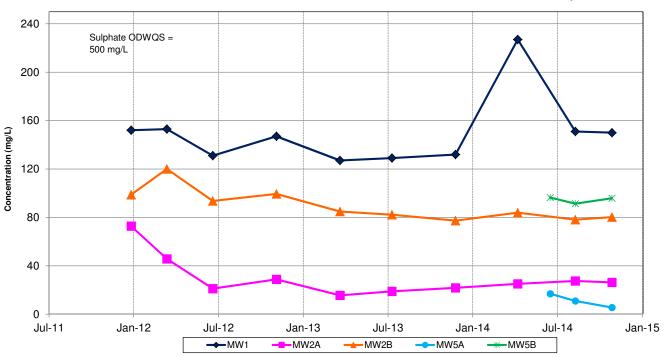


UPGRADIENT AND ADJACENT MONITORS - Boreholes 1, 2 & 5

DOWNGRADIENT MONITORS - Boreholes 3 & 4



FIGURE B-2 GROUNDWATER TIME CONCENTRATION GRAPHS - SODIUM



UPGRADIENT AND ADJACENT MONITORS - Boreholes 1, 2 & 5

FIGURE B-3 GROUNDWATER TIME CONCENTRATION GRAPHS - SULPHATE

UPGRADIENT AND ADJACENT MONITORS - Boreholes 1, 2 & 5

DOWNGRADIENT MONITORS - Boreholes 3 & 4

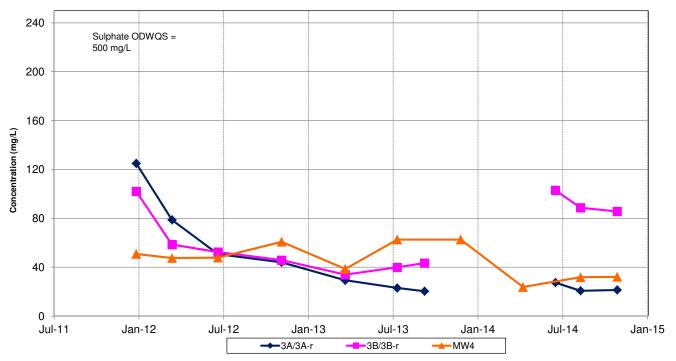
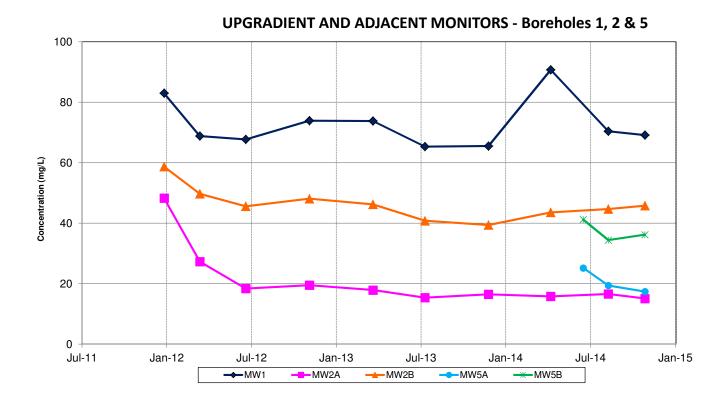



FIGURE B-4 GROUNDWATER TIME CONCENTRATION GRAPHS - CALCIUM

DOWNGRADIENT MONITORS - Boreholes 3 & 4

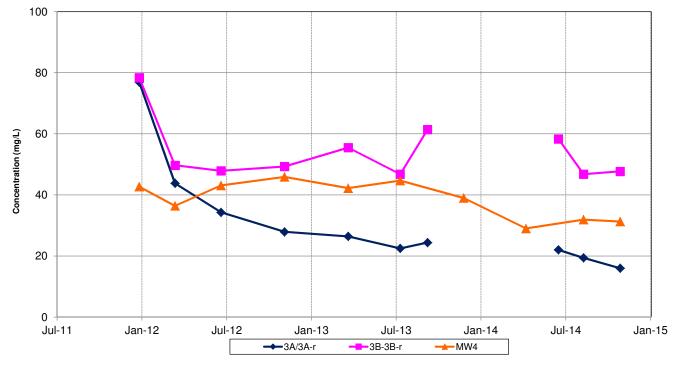
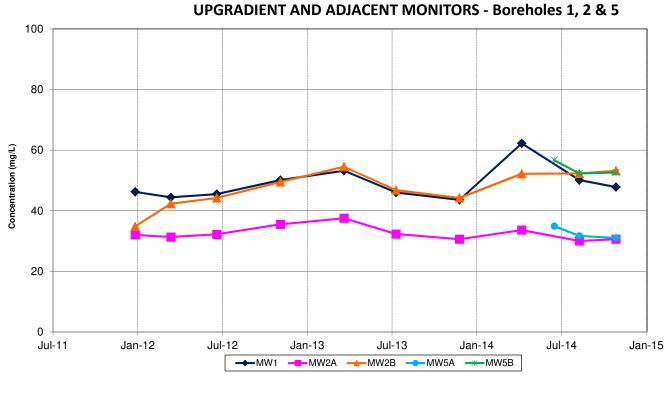
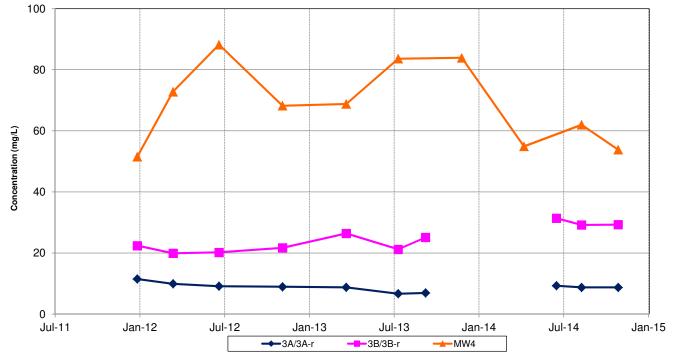
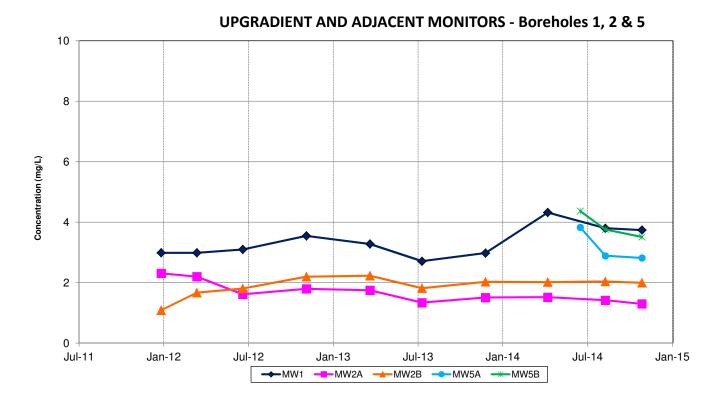
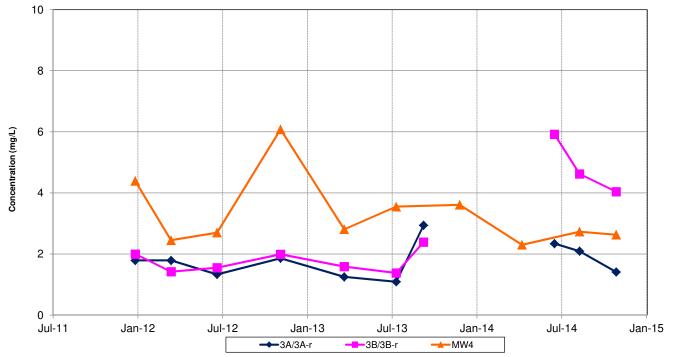
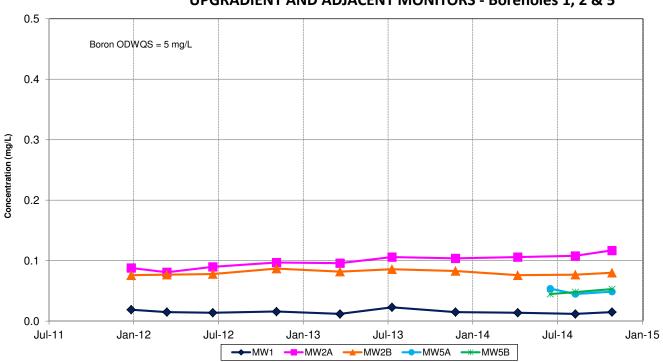



FIGURE B-5 GROUNDWATER TIME CONCENTRATION GRAPHS - MAGNESIUM

DOWNGRADIENT MONITORS - Boreholes 3 & 4


FIGURE B-6 GROUNDWATER TIME CONCENTRATION GRAPHS - POTASSIUM

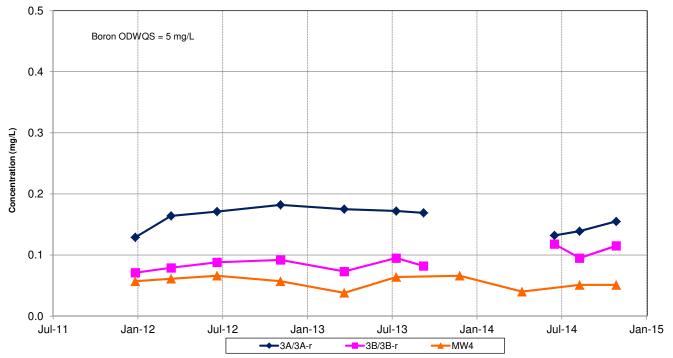
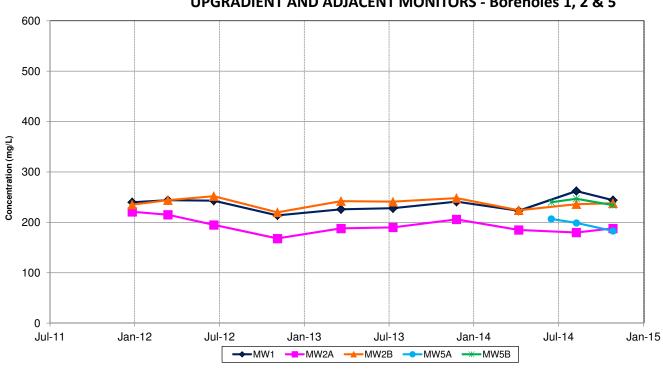


FIGURE B-7 GROUNDWATER TIME CONCENTRATION GRAPHS - BORON



DOWNGRADIENT MONITORS - Boreholes 3 & 4

UPGRADIENT AND ADJACENT MONITORS - Boreholes 1, 2 & 5

FIGURE B-8 GROUNDWATER TIME CONCENTRATION GRAPHS - BICARBONATE

UPGRADIENT AND ADJACENT MONITORS - Boreholes 1, 2 & 5

TABLE B-3

FIELD DUPLICATE SAMPLES - Relative Percent Differences

DURHAM YORK ENERGY CENTRE - 2014 MONITORING PROGRAM

			MW4			MW5A	
PARAMETER	UNITS		April 2014		C	October 201	4
PARAMETER		Original	Duplicate	RPD (%)	Original	Duplicate	RPD (%)
Bicarbonate (as CaCO3)	mg/L	301	277	8	183	205	11
Boron	mg/L	0.04	0.039	3	0.049	0.045	9
Cadmium	mg/L	<0.002	<0.002		<0.002	<0.002	
Calcium	mg/L	29	28.8	1	17.4	17.3	1
Carbonate (as CaCO3)	mg/L	<5	<5		<5	<5	
Chloride	mg/L	8.64	8.6	0	3.16	3.2	1
Cobalt	mg/L	<0.001	<0.001		0.001	0.001	0
Lead	mg/L	<0.002	<0.002		<0.002	<0.002	
Magnesium	mg/L	54.9	55.5	1	31	30.6	1
Mercury	mg/L	<0.0001	<0.0001		<0.0001	<0.0001	
Potassium	mg/L	2.3	2.31	0	2.82	2.8	1
Sodium	mg/L	22.2	22.3	0	11.4	11.3	1
Sulphate	mg/L	23.8	23.9	0	5.56	5.68	2

NOTES: 1) Blank indicates parameter not analysed.

2) RPD = Relative Percent Difference

$$\frac{\text{RPD} = X1-X2}{Xavg} \times 100$$

	G			S	ertifica	Certificate of Analysis	alysis		MISSISSAL	MISSISSAUGA, ONTARIO
		Labo	Laboratories		BAT WORK	AGAT WORK ORDER: 14T828396	328396		CA	CANADA L4Z 1Y2 TEL (905)712-5100
				Ĩ	SOJECT NO:	PROJECT NO: 111-26648-00	0		FAX http://www	FAX (905)712-5122 http://www.aqatlabs.com
CLIENT NAME: WSP CANADA INC.	NC.						ATTENTIC	ATTENTION TO: Steve Taziar		5
					Groundwater - F	ter - F				
DATE RECEIVED: 2014-04-10									DATE REPORTED: 2014-04-17	
	1S	SAMPLE DESCRIPTION:	RIPTION:	MW1		MW2A	MW2B	MW4	Duplicate	
		SAMP	SAMPLE TYPE:	Water		Water	Water	Water	Water	
	:	DATES	DATE SAMPLED:	4/9/2014	i	4/9/2014	4/9/2014	4/9/2014	4/9/2014	
Parameter	Unit	G/S	RDL	5275466	RDL	5275625	5275629	5275636	5275647	
Bicarbonate (as CaCO3)	mg/L		ъ	223	S	185	224	301	277	
Carbonate (as CaCO3)	mg/L		5	ŝ	5	₹ 2	<5	<5	<5	
Chloride	mg/L	(250)	0.50	13.5	0.20	3,32	22,6	8.64	8.60	
Sulphate	mg/L	(200)	0.50	227	0.20	25.1	84.0	23.8	23.9	
Calcium	mg/L		0.05	90.7	0.05	15.8	43.6	29.0	28.8	
Magnesium	mg/L		0.05	62.2	0,05	33.6	52.2	54.9	55.5	
Sodium	mg/L	20 (200)	0.05	9.60	0.05	24.7	22.5	22.2	22.3	
Potassium	mg/L		0.05	4.32	0.05	1.52	2,02	2.30	2.31	
Boron	mg/L	5	0.010	0.014	0,010	0,106	0.076	0,040	0.039	
Cadmium	mg/L	0,005	0.002	<0.002	0,002	<0.002	<0.002	<0.002	<0.002	
Cobalt	mg/L		0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	
Lead	mg/L	0.01	0,002	<0,002	0.002	<0.002	<0,002	<0.002	<0.002	
Mercury	mg/L	0.001	0.0001	<0,0001	0,0001	<0.0001	<0.0001	<0.0001	<0.0001	
Commonto: DDI Bonoctod Dataction junit		C / C / C / Ctondard	o / Ctondord	Defere to O Dec 160103/mail	160/03/ma/l \					ť.

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O.Reg, 169/03(mg/L) 5275466-5275647 The RDLs change for anions to reflect the dilution required to keep the analytes within a calibration range of the instrument.

Results relate only to the items tested and to all the items tested

AGAT CERTIFICATE OF ANALYSIS (V1)

Elijabeth Rolokowskia

Certified By:

Page 2 of 5

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

Certificate of Analysis

	<u>n</u> n n n	Laboratories	Guideline Violation AGAT WORK ORDER: 14T828396 PROJECT NO: 111-26648-00		5835 CC MISSISS http://	5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L42 1Y2 TEL (905)712-5120 FAX (905)712-5120 TAUP, (905)712-5120 http://www.agatlabs.com
IT NAME:	CLIENT NAME: WSP CANADA INC.			ATTENTION TO: Steve Taziar		
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
5275625	MW2A	O.Reg.169/03(mg/L)	Groundwater - F	Sodium	20 (200)	24.7
5275629	MW2B	O.Reg.169/03(mg/L)	Groundwater - F	Sodium	20 (200)	22.5
5275636	MW4	O.Reg.169/03(mg/L)	Groundwater - F	Sodium	20 (200)	22.2
5275647	Duplicate	O.Reg.169/03(mg/L)	Groundwater - F	Sodium	20 (200)	22.3

Page 3 of 5

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT NO: 111-26648-00

AGAT WORK ORDER: 14T828396 ATTENTION TO: Steve Taziar

				Wate	er Ar	nalysi	is								
RPT Date: Apr 17, 2014			C	UPLICATE			REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	1	eptable mits
TANAMETEN	Buton	ld	bap				Value	Lower	Upper			Upper			Upper
Groundwater - F						·									
Chloride	5275466 5	5275466	13.5	13.2	2.3%	< 0.10	93%	90%	110%	95%	90%	110%	110%	80%	120%
Sulphate	5275466 5	5275466	227	224	1.3%	< 0.10	97%	90%	110%	98%	90%	110%	NA	80%	120%
Calcium	5277863		45.1	45.1	0_0%	< 0.05	104%	90%	110%	106%	90%	110%	100%	70%	130%
Magnesium	5277863		18.5	18.6	0.7%	< 0.05	102%	90%	110%	104%	90%	110%	101%	70%	130%
Sodium	5277863		6,99	6.91	1.2%	< 0.05	109%	90%	110%	108%	90%	110%	104%	70%	130%
Potassium	5277863		2,46	2.45	0.1%	< 0.05	105%	90%	110%	108%	90%	110%	106%	70%	130%
Boron	1		0.033	0.032	3.1%	< 0.010	95%	90%	110%	98%	90%	110%	95%	70%	130%
Cadmium	1		< 0.002	< 0.002	0.0%	< 0.002	100%	90%	110%	107%	90%	110%	108%	70%	130%
Cobalt	1		0.003	0.003	0.0%	< 0.001	93%	90%	110%	105%	90%	110%	99%	70%	130%
Lead	1		< 0.002	< 0.002	0.0%	< 0.002	99%	90%	110%	110%	90%	110%	104%	70%	130%
Mercury	1		< 0.0001	< 0.0001	0.0%	< 0.0001	100%	90%	110%	105%	90%	110%	98%	80%	120%

Certified By:

Elizabeth Rolskowska

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 4 of 5

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT NO: 111-26648-00

AGAT WORK ORDER: 14T828396

	ATTENTION TO: Steve Taziar				
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
		1.5			
INOR-93-6000	SM 2320 B	PC TITRATE			
INOR-93-6000	SM 2320 B	PC TITRATE			
INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH			
INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH			
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES			
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES			
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES			
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES			
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS			
MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS			
	INOR-93-6000 INOR-93-6000 INOR-93-6004 INOR-93-6004 MET-93-6105 MET-93-6105 MET-93-6105 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103	AGAT S.O.P LITERATURE REFERENCE INOR-93-6000 SM 2320 B INOR-93-6000 SM 2320 B INOR-93-6000 SM 2320 B INOR-93-6004 SM 4110 B INOR-93-6004 SM 4110 B INOR-93-6105 EPA SW-846 6010C & 200.7 MET-93-6105 EPA SW-846 6010C & 200.7 MET-93-6103 EPA SW-846 6020A & 200.8 MET-93-6103 EPA SW-846 6020A & 200.8			

Laboratories
JB

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

Certificate of Analysis AGAT WORK ORDER: 14T854599

AGA1 WURK URUEK: 141854539 PROJECT: 111-26648-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADAL 42 1Y2 TEL (905)712-5120 FAX (905)712-5120 http://www.agatlabs.com

Taziar	
Steve 7	
ENTION TO:	PLED BY:
ATTEN	SAM

			Steve	e Taziar - (e Taziar - Ground Water - GW-F Parameters	r - GW-F På	arameters				
DATE RECEIVED: 2014-06-20								10	ATE REPORTE	DATE REPORTED: 2014-06-30	
		SAMPLE DESCRIPTION:	CRIPTION:	MW3A		MW3B		MW5A		MW5B	
		SAMF	SAMPLE TYPE:	Water		Water		Water		Water	
		DATE S	DATE SAMPLED:	6/18/2014		6/18/2014		6/18/2014		6/18/2014	
Parameter	Unit	G/S	RDL	5502511	RDL	5502522	RDL	5502529	RDL	5502534	
Bicarbonate (as CaCO3)	mg/L		5	134	5	198	5	207	5	240	_
Carbonate (as CaCO3)	mg/L		5	<u></u> 2>	5	55	5	<5	5	<5	
Chloride	mg/L	(250)	0.10	7.53	0.50	15,4	0.20	5,29	0.50	5.93	_
Sulphate	mg/L	(200)	0.10	27.4	0.50	103	0.20	16.9	0.50	96.4	
Calcium	mg/L		0.05	22.0	0.05	58.3	0.05	25.2	0.05	41.2	
Magnesium	mg/L		0,05	9,27	0,05	31.4	0.05	34.9	0.05	56.7	
Sodium	mg/L	20 (200)	0.05	35,1	0.05	25.1	0.05	12.2	0.05	10.2	
Potassium	mg/L		0.05	2.34	0.05	5,92	0-05	3.83	0.05	4.37	
Boron	mg/L	ъ	0.010	0.132	0.010	0.118	0.010	0.054	0.010	0,045	
Cadmium	mg/L	0.005	0.002	<0.002	0,002	<0.002	0.002	<0.002	0.002	<0.002	
Cobalt	mg/L		0.001	<0.001	0.001	<0.001	0.001	<0.001	0.001	<0.001	_
Lead	mg/L	0.01	0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002	
Mercury	mg/L	0,001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	
		and a selection of o			160,03/2021						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O.Reg. 169/03(mg/L) 5502511-5502534 Samples were diluted prior to analysis for Anions in order to minimize any matrix interference; the RDLs were adjusted to reflect the dilution.

Elijabeth Rolokowska

Certified By:

Page 2 of 5

Guideline Violation 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO MISSISSAUGA, ONTARIO AGAT WORK ORDER: 14T854599 CANADA 14Z 172 PROJECT: 111-26648-00 FAX (2007) 12-5122	ATTENTION TO: Steve Taziar	ANALYSIS PACKAGE PARAMETER GUIDEVALUE RESULT	Steve Taziar - Ground Water - GW-F Parameters Sodium 20 (200) Steve Taziar - Ground Water - GW-F Parameters Sodium 20 (200)
] Laboratories		GUIDELINE	O.Reg.169/03(mg/L) Steve O Reg.169/03(mg/L) Steve 7
<u>aga1</u>	CLIENT NAME: WSP CANADA INC.	SAMPLE TITLE	MW3A MW3B
	CLIENT NAME	SAMPLEID	5502511 5502522

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00

SAMPLING SITE:

AGAT WORK ORDER: 14T854599 ATTENTION TO: Steve Taziar SAMPLED BY:

				Wate	er An	alysi	is								
RPT Date: Jun 30, 2014 DUPLICATE							REFERE		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	l 1:-	eptable nits
		ld					Value	Lower	Upper			Upper		Lower	Upper
Steve Taziar - Ground Water	- GW-F Paran	neters													
Bicarbonate (as CaCO3)	5499145		103	101	1.4%	< 5	NA			NA			NA		
Carbonate (as CaCO3)	5499145		<5	<5	0.0%	< 5	NA			NA			NA		
Chloride	5502534	5502534	5.93	5.90	0.6%	< 0.10	93%	90%	110%	95%	90%	110%	98%	80%	120%
Sulphate	5502534	5502534	96.4	95.7	0.7%	< 0.10	96%	90%	110%	99%	90%	110%	98%	80%	120%
Calcium	5500995		0.29	0_27	5,6%	< 0,05	103%	90%	110%	97%	90%	110%	99%	70%	130%
Magnesium	5500995		0.06	<0.05	0.0%	< 0,05	102%	90%	110%	96%	90%	110%	97%	70%	130%
Sodium	5500995		64.6	63,6	1.5%	< 0.05	94%	90%	110%	90%	90%	110%	89%	70%	130%
Potassium	5500995		0,36	0.32	11.1%	< 0.05	100%	90%	110%	96%	90%	110%	95%	70%	130%
Boron	1	5502511	0.132	0.136	3.0%	< 0.010	107%	90%	110%	110%	90%	110%	90%	70%	130%
Cadmium	1	5502511	< 0.002	< 0.002	0.0%	< 0.002	99%	90%	110%	103%	90%	110%	109%	70%	130%
Cobalt	1	5502511	< 0.001	< 0.001	0.0%	< 0,001	95%	90%	110%	95%	90%	110%	90%	70%	130%
Lead	1	5502511	< 0.002	< 0.002	0.0%	< 0.002	98%	90%	110%	97%	90%	110%	93%	70%	130%
Mercury	1		< 0.0001	< 0.0001	0.0%	< 0.0001	99%	90%	110%	103%	90%	110%	97%	80%	120%

Comments: NA Signifies Not Applicable.

Certified By:

Elizabeth Rolakowska

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 4 of 5

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00

AGAT WORK ORDER: 14T854599 **ATTENTION TO: Steve Taziar**

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis								
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS					

Laboratories
LUDU

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

Certificate of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5120 FAX (905)712-5120 http://www.agatlabs.com

> AGAT WORK ORDER: 14T874679 PROJECT: 111-26648-00

ATTENTION TO: Steve Taziar SAMPLED BY:Eric Taylor

				Groundw	ater - GW.	Groundwater - GW-F Parameters	S				
DATE RECEIVED: 2014-08-12								DA	VTE REPORTE	DATE REPORTED: 2014-08-19	-
	5	SAMPLE DESCRIPTION:	RIPTION:	MW1		MW2A		MW2B		MW3A	
		SAMP	SAMPLE TYPE:	Water		Water		Water		Water	
		DATE S	DATE SAMPLED:	8/11/2014		8/11/2014		8/11/2014		8/11/2014	
Parameter	Unit	G/S	RDL	5684120	RDL	5684126	RDL	5684129	RDL	5684132	1
Bicarbonate (as CaCO3)	mg/L		5	262	5	180	5	236	5	120	
Carbonate (as CaCO3)	mg/L		5	<5	5	€5	5	\$5	5	<5	_
Chloride	mg/L	250	0,20	15.0	0,10	4.46	0.20	45.4	0.10	6.52	
Sulphate	mg/L	500	0.20	151	0.10	27.5	0.20	78.1	0.10	20.7	
Calcium	mg/L		0.05	70.4	0.05	16.6	0.05	44.7	0.05	19.4	-
Magnesium	mg/L		0.05	50.1	0.05	30,0	0.05	52.3	0.05	8.73	-
Sodium	mg/L	20 (200)	0.05	13.4	0.05	25,9	0,05	22.5	0.05	35.7	
Potassium	mg/L		0.05	3.80	0.05	1.42	0.05	2.04	0,05	2.09	-
Boron	mg/L	5	0.010	0.012	0.010	0.108	0.010	0.077	0.010	0.139	-
Cadmium	mg/L	0.005	0.002	<0.002	0,002	<0.002	0,002	<0.002	0.002	<0.002	-
Cobalt	mg/L		0.001	<0.001	0.001	<0.001	0,001	<0.001	0.001	<0.001	-
Lead	mg/L	0.01	0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002	-
Mercury	mg/L	0.001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	0,0001	<0.0001	

Certified By:

Results relate only to the items tested and to all the items tested

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 2 of 6

Minh Minnauer

Groundwater - GW-F Parameters	Gro
	SAMPLING SITE:
	CLIENT NAME: WSP CANADA INC.
. PROJECT: 111-26648-00	
AGAT WORK ORDER: 14T8746	Laboratories
Certificate of Anal	

alysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L42 1Y2 TEL (905)712-5120 FAX (905)712-5120 FAX (905)712-5122 http://www.agatlabs.com

	e Taziar
http://www	
FAX	

Taziar	lor
TO: Steve	/:Eric Tay
I NOITN	PLED BY:
ATTE	SAMF

				ninoio	GIOUINWALCI - OW-I FAIAIIICICIS				
DATE RECEIVED: 2014-08-12									DATE REPORTED: 2014-08-19
		SAMPLE DESCRIPTION:	CRIPTION:	MW3B	MW4		MW5A		MW5B
		SAM	SAMPLE TYPE:	Water	Water		Water		Water
		DATE	DATE SAMPLED:	8/11/2014	8/11/2014		8/11/2014		8/11/2014
Parameter	Unit	G/S	RDL	5684135	5684138	RDL	5684141	RDL	5684144
Bicarbonate (as CaCO3)	mg/L		2	209	353	5	199	£	247
Carbonate (as CaCO3)	mg/L		5	<5	<5	5	₹2	5	<5
Chloride	mg/L	250	0.20	12,3	8.46	0.10	3,87	0.20	5.01
Sulphate	mg/L	500	0.20	88.7	31.8	0.10	11.0	0.20	91.4
Calcium	mg/L		0.05	46.8	31.9	0,05	19.4	0,05	34.4
Magnesium	mg/L		0.05	29.2	62.0	0.05	31.7	0.05	52.3
Sodium	mg/L	20 (200)	0.05	23.8	25.5	0.05	11.2	0.05	10.1
Potassium	mg/L		0.05	4.62	2.73	0.05	2.89	0.05	3.76
Boron	mg/L	5	0.010	0,095	0.051	0,010	0,045	0.010	0.048
Cadmium	mg/L	0.005	0,002	<0.002	<0,002	0.002	<0.002	0.002	<0.002
Cobalt	mg/L		0.001	<0.001	<0,001	0.001	<0.001	0.001	<0.001
Lead	mg/L	0.01	0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002
Mercury	mg/L	0.001	0,0001	<0.0001	<0.0001	0.0001	<0,0001	0.0001	<0.0001
	the state of the factor				1000001				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O.Reg. 169/03(mg/L) **5684120-5684144** Samples required dilution prior to analysis for Anions in order to keep the analytes within the calibration range of the instruments and to minimize any matrix interferences; the RDLs were adjusted to reflect the dilution

Results relate only to the items tested and to all the items tested

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Mal Mum

	<u>a</u> aa A	Laboratories	Cuideline Violation AGAT WORK ORDER: 14T874679 PROJECT: 111-26648-00		5835 CC MISSISS http://	8835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5120 FAX (905)712-5122 http://www.aoatlebs.com
CLIENT NAME:	LIENT NAME: WSP CANADA INC.		AT	ATTENTION TO: Steve Taziar		9
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
5684126	MW2A	O.Reg.169/03(mg/L)	Groundwater - GW-F Parameters	Sodium	20 (200)	25.9
5684129	MW2B	O.Reg.169/03(mg/L)	Groundwater - GW-F Parameters	Sodium	20 (200)	22.5
5684132	AWWAA	O.Reg.169/03(mg/L)	Groundwater - GW-F Parameters	Sodium	20 (200)	35.7
5684135	MW3B	O.Reg.169/03(mg/L)	Groundwater - GW-F Parameters	Sodium	20 (200)	23.8
5684138	MW4	O.Reg.169/03(mg/L)	Groundwater - GW-F Parameters	Sodium	20 (200)	25.5

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00

SAMPLING SITE:

AGAT WORK ORDER: 14T874679 ATTENTION TO: Steve Taziar SAMPLED BY:Eric Taylor

Water Analysis

RPT Date: Aug 19, 2014			OUPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 15-	eptable nits	Recovery	1 1 2 -	eptable mits
	Id					value	Lower	Upper		Lower	Upper		Lower	Upper
Groundwater - GW-F Parame	ters													
Bicarbonate (as CaCO3)	5685513	36	37	2.7%	< 5	NA			NA			NA		
Carbonate (as CaCO3)	5685513	<5	<5	0.0%	< 5	NA			NA			NA		
Chloride	5685563	99.1	97.6	1.5%	< 0.10	92%	90%	110%	92%	90%	110%	106%	80%	120%
Sulphate	5685563	97.6	96.0	1.7%	< 0,10	96%	90%	110%	98%	90%	110%	101%	80%	120%
Calcium	5684120 5684120	70,4	69.8	0.9%	< 0.05	97%	90%	110%	95%	90%	110%	97%	70%	130%
Magnesium	5684120 5684120	50.1	49.6	1.0%	< 0.05	97%	90%	110%	95%	90%	110%	99%	70%	130%
Sodium	5684120 5684120	13.4	13.3	0.7%	< 0.05	99%	90%	110%	99%	90%	110%	103%	70%	130%
Potassium	5684120 5684120	3.80	3.76	1.1%	< 0.05	98%	90%	110%	98%	90%	110%	104%	70%	130%
Boron	1	0.045	0.044	2.2%	< 0.010	109%	90%	110%	102%	90%	110%	98%	70%	130%
Cadmium	1	< 0.002	< 0,002	0.0%	< 0.002	103%	90%	110%	107%	90%	110%	106%	70%	130%
Cobalt	1	0.004	0.004	0.0%	< 0.001	98%	90%	110%	105%	90%	110%	111%	70%	130%
Lead	1	< 0.002	< 0.002	0.0%	< 0.002	95%	90%	110%	104%	90%	110%	100%	70%	130%
Mercury	5686257	<0.0001	<0.0001	0.0%	< 0.0001	103%	90%	110%	101%	90%	110%	100%	80%	120%

Comments: NA signifies Not Applicable.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Male Munemin

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 5 of 6

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00

SAMPLING SITE:

AGAT WORK ORDER: 14T874679 ATTENTION TO: Steve Taziar SAMPI ED BX: Fric Taylor

	SAMPLED BT:EF	ic rayior
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1		11 2 11
INOR-93-6000	SM 2320 B	PC TITRATE
INOR-93-6000	SM 2320 B	PC TITRATE
INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS
	INOR-93-6000 INOR-93-6000 INOR-93-6004 INOR-93-6004 MET-93-6105 MET-93-6105 MET-93-6105 MET-93-6103 MET-93-6103 MET-93-6103 MET-93-6103	AGAT S.O.P LITERATURE REFERENCE INOR-93-6000 SM 2320 B INOR-93-6000 SM 2320 B INOR-93-6000 SM 2320 B INOR-93-6004 SM 4110 B INOR-93-6004 SM 4110 B INOR-93-6105 EPA SW-846 6010C & 200.7 MET-93-6105 EPA SW-846 6010C & 200.7 MET-93-6105 EPA SW-846 6010C & 200.7 MET-93-6105 EPA SW-846 6010C & 200.7 MET-93-6103 EPA SW-846 6020A & 200.8 MET-93-6103 EPA SW-846 6020A & 200.8

Labo
5
E

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

aboratories

Certificate of Analysis AGAT WORK ORDER: 14T909397

AGAT WORK ORDER: 14T909397 PROJECT: 111-26648-00 ATTENTION TO: Steve Taziar

SAMPLED BY:Eric Taylor

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5120 FAX (905)712-5120 http://www.agatlabs.com

			Steve	Taziar - Gr	oundwate.	e Taziar - Groundwater - Group F Parameters	arameters				
DATE RECEIVED: 2014-10-30								Ď	ATE REPORTE	DATE REPORTED: 2014-11-10	
		SAMPLE DESCRIPTION	CRIPTION:	MW1		MW2A		MW2B		MW3A	
		SAMF	SAMPLE TYPE:	Water		Water		Water		Water	
		DATE S	DATE SAMPLED:	10/29/2014		10/29/2014		10/29/2014		10/29/2014	
Parameter	Unit	G/S	RDL	6019054	RDL	6019057	RDL	6019059	RDL	6019061	
Bicarbonate (as CaCO3)	mg/L		ъ	244	5	188	5	238	5	123	
Carbonate (as CaCO3)	mg/L		5	<5	5	\$5	5	<5	5	<5	
Chloride	mg/L		0.50	15.3	0.10	4.47	0.50	59.9	0.10	6.24	
Sulphate	mg/L		0.50	150	0.10	26.3	0.50	80.2	0.10	21.4	
Calcium	mg/L		0.05	69.1	0.05	15.1	0.05	45.8	0.05	16.0	
Magnesium	mg/L		0.05	47.8	0.05	30,6	0,05	53,2	0.05	8.74	
Sodium	mg/L		0.05	13.0	0,05	25.2	0.05	24.5	0.05	34.5	
Potassium	mg/L		0.05	3.74	0,05	1.30	0.05	2.00	0.05	1,41	
Boron	mg/L		0.010	0.015	0.010	0.117	0.010	0.080	0.010	0.155	
Cadmium	mg/L		0.002	<0.002	0.002	<0,002	0.002	<0.002	0,002	<0.002	
Cobalt	mg/L		0.001	<0.001	0,001	<0.001	0.001	<0,001	0.001	<0.001	
Lead	шg/L		0.002	<0.002	0,002	<0.002	0.002	<0.002	0.002	<0.002	
Mercury	mg/L		0.0001	<0.0001	0.0001	<0.0001	0.0001	<0,0001	0.0001	<0,0001	

Certified By:

Results relate only to the items tested and to all the items tested

AGAT CERTIFICATE OF ANALYSIS (V1)

Neel Mensue

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

Certificate of Analysis

AGAT WORK ORDER: 14T909397

PROJECT: 111-26648-00

信気T Laboratories CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Steve Taziar SAMPLED BY:Eric Taylor

			Steve	Taziar - Gı	roundwater	- Group F	Taziar - Groundwater - Group F Parameters				-
DATE RECEIVED: 2014-10-30									DATE REPORTED: 2014-11-10	D: 2014-11-10	
		SAMPLE DESCRIPTION:	CRIPTION:	MW3B	MW4		MW5A		MW5B		Duplicate
		SAM	SAMPLE TYPE:	Water	Water		Water		Water		Water
		DATE (DATE SAMPLED:	10/29/2014	10/29/2014		10/29/2014		10/29/2014		10/29/2014
Parameter	Unit	G/S	RDL	6019063	6019065	RDL	6019071	RDL	6019074	RDL	6019077
Bicarbonate (as CaCO3)	mg/L		ъ	203	300	ъ	183	5	234	5	205
Carbonate (as CaCO3)	mg/L		ъ	<5	S ⊳	5	55	5	\$	S	<5
Chloride	mg/L		0.20	10.7	12.2	0.10	3.16	0.20	4.78	0.10	3.20
Sulphate	mg/L		0.20	85.7	32,1	0,10	5.56	0.20	95.9	0.10	5.68
Calcium	mg/L		0.05	47.7	31,3	0.05	17.4	0,05	36.2	0,05	17.3
Magnesium	mg/L		0.05	29.3	53.8	0.05	31.0	0.05	52.6	0,05	30.6
Sodium	mg/L		0,05	23.9	22.0	0.05	11.4	0.05	10.2	0.05	11.3
Potassium	mg/L		0.05	4.04	2.63	0.05	2.82	0,05	3.51	0.05	2.80
Boron	mg/L		0.010	0.115	0.051	0,010	0.049	0,010	0.053	0.010	0.045
Cadmium	mg/L		0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002
Cobalt	mg/L		0.001	<0.001	<0.001	0.001	0.001	0.001	<0.001	0.001	0.001
Lead	mg/L		0.002	<0,002	<0.002	0.002	<0.002	0.002	<0.002	0.002	<0.002
Mercury	mg/L		0.0001	<0.0001	<0,0001	0.0001	<0,0001	0.0001	<0.0001	0,0001	<0.0001
	A second s										

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 6019054-6019077 Samples required dilution prior to analysis for Anions in order to keep the analytes within the calibration range of the instrument; the RDLs were adjusted to reflect the dilution.

Results relate only to the items tested and to all the items tested

Certified By:

Page 3 of 5

Male Minsour

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00

SAMPLING SITE:

AGAT WORK ORDER: 14T909397 ATTENTION TO: Steve Taziar SAMPLED BY:Eric Taylor

Water Analysis

					-									
RPT Date: Nov 10, 2014			UPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Samp	le Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 15-	ptable πits	Recovery	1 1 1 1 1	ptable nits
	Id	_				value	Lower	Upper		Lower	Upper		Lower	Upper
Steve Taziar - Groundwater -	Group F Parameters													
Bicarbonate (as CaCO3)	6019994	193	196	1,5%	< 5	NA			NA			NA		
Carbonate (as CaCO3)	6019994	<5	<5	0_0%	< 5	NA			NA			NA		
Chloride	6019054 601905	4 15.3	14,8	3.3%	< 0.10	93%	90%	110%	100%	90%	1 10%	103%	80%	120%
Sulphate	6019054 601905	4 150	149	0.7%	< 0,10	100%	90%	110%	99%	90%	110%	101%	80%	120%
Calcium	6023428	35.9	35.4	1.4%	< 0.05	100%	90%	110%	98%	90%	110%	92%	70%	130%
Magnesium	6023428	6.74	6.67	1.0%	< 0.05	98%	90%	110%	97%	90%	110%	89%	70%	130%
Sodium	6023428	6.16	6,09	1,1%	< 0.05	101%	90%	110%	100%	90%	110%	92%	70%	130%
Potassium	6023428	1.84	1.81	1.6%	< 0.05	99%	90%	110%	97%	90%	110%	93%	70%	130%
Boron	6020489 601907	7 0.045	0.047	4.3%	< 0.010	107%	90%	110%	98%	90%	110%	107%	70%	130%
Cadmium	6020489 601907	7 < 0.002	< 0,002	0,0%	< 0.002	95%	90%	110%	102%	90%	110%	106%	70%	130%
Cobalt	6020489 601907	7 0.001	0.001	0,0%	< 0.001	100%	90%	110%	96%	90%	110%	106%	70%	130%
Lead	6020489 601907	7 < 0.002	< 0.002	0.0%	< 0.002	92%	90%	110%	96%	90%	110%	98%	70%	130%
Mercury	6019054 601905	4 < 0.0001	<0.0001	0.0%	< 0.0001	107%	90%	110%	107%	90%	110%	110%	80%	120%

Comments: NA Signifies Not Applicable,

Male Muneson

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 4 of 5

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00

AGAT WORK ORDER: 14T909397 **ATTENTION TO: Steve Taziar**

SAMPLING SITE:		SAMPLED BY:E	ric Taylor
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Mercury	MET-93-6100	EPA SW-846 7470 & 245.1	CVAAS

Appendix C

MOE CHECKLIST

Appendix D-Monitoring and Screening Checklist General Information and Instructions

General Information: The checklist is to be completed, and submitted with the Monitoring Report.

Instructions: A complete checklist consists of:

(a) a completed and signed checklist, including any additional pages of information which can be attached as needed to provide further details where indicated.

(b) completed contact information for the Competent Environmental Practitioner (CEP)

(c) self-declaration that CEP(s) meet(s) the qualifications as set out below and in Section 1.2 of the Technical Guidance Document.

Definition of Groundwater CEP:

For groundwater, the CEP must have expertise in hydrogeology and meet one of the following:

(a) the person holds a licence, limited licence or temporary licence under the Professional Engineers Act; or

(b) the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary, member or limited member of the Association of Professional Geoscientists of Ontario. O. Reg. 66/08, s. 2..

Definition of Surface water CEP:

A CEP for surface water assessments is a scientist, professional engineer or professional geoscientist as described in (a) and (b) above with demonstrated experience and post-secondary education, either a diploma or degree, in hydrology, aquatic ecology, limnology, aquatic biology, physical geography with specialization in surface water, and/or water resource management.

The type of scientific work that a CEP performs must be consistent with that person's education and experience. If an individual has appropriate training and credentials in both groundwater and surface water and is responsible for both areas of expertise, the CEP may then complete and validate both sections of the checklist.

I	Monitoring Report and Site Information
Waste Disposal Site Name	Durham York Energy Centre
Location (e.g. street address, lot, concession)	Osborne Road, south of South Service Road, southeast of Courtice Rd / Highway 401
GPS Location (taken within the property boundary at front gate/ front entry)	680660, 4860506, Zone 17, NAD 83
Municipality	Municipality of Clarington, in the Regional Municipality of Durham
Client and/or Site Owner	Regional Municipalities of Durham and York
Monitoring Period (Year)	2014
This N	Ionitoring Report is being submitted under the following:
Certificate of Approval No.:	7306-8FDKNX
Director's Order No.:	
Provincial Officer's Order No.:	
Other:	

Report Submission Frequency	AnnualOther	
The site is:	C	Active Inactive Closed
If closed, specify C of A, control or aut	horizing document closure date:	N/A
Has the nature of the operations at the site changed during this monitoring period?) Yes) No
If yes, provide details:	Site is in the construction phase.	
Have any measurements been taken since the last reporting period that indicate landfill gas volumes have exceeded the MOE limits for subsurface or adjacent buildings? (i. e. exceeded the LEL for methane)		○ Yes ● No

Groundwater WDS Verifica Based on all available information ab		it is my opinion that:		
Sa	ampling and Monitoring	g Program Status:		
1) The monitoring program continues to effectively characterize site conditions and any groundwater discharges from the site. All monitoring wells are confirmed to be in good condition and are secure:	● Yes ○ No	If no, list exceptions (Type Here):		
2) All groundwater, leachate and WDS gas sampling and monitoring for the monitoring period being reported on was successfully completed as required by Certificate(s) of Approval or other relevant authorizing/control document(s)	 Yes No Not Applicable 	If no, list exceptions below or atta	ch information.	
Groundwater Sampling Location	Description/Explanation for cha (change in name or location, add		Date	
Type Here	Type Here	Select Date		
Type Here	Type Here		Select Date	
Type Here	Type Here		Select Date	

 a) Some or all groundwater, leachate and WDS gas sampling and monitoring requirements have been established or defined outside of a ministry C of A, authorizing, or control document. 		 Yes No Not Applicable 	
b) If yes, the sampling and monitoring identified under 3(a) for the monitoring period being reported on was successfully completed in accordance with established protocols, frequencies, locations, and parameters developed as per the Technical Guidance Document:		 Yes No Not Applicable 	If no, list exceptions below or attach additional information.
Groundwater Sampling Location	Description/Explanation for change (change in name or location, additions, deletions)		Date
			Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here	Select Date	
4) All field work for groundwater investigations was done in accordance with standard operating procedures as established/outlined per the Technical Guidance Document (including internal/external QA/ QC requirements) (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	● Yes ○ No	lf no, specify (Type Here):	

Sampling and Monitoring Program Results/WDS Conditions and Assessment:				
5) The site has an adequate buffer, Contaminant Attenuation Zone (CAZ) and/or contingency plan in place. Design and operational measures, including the size and configuration of any CAZ, are adequate to prevent potential human health impacts and impairment of the environment.	● Yes ○ No			
6) The site meets compliance and assessment criteria.	● Yes ○ No			
7) The site continues to perform as anticipated. There have been no unusual trends/ changes in measured leachate and groundwater levels or concentrations.	● Yes ○ No	If no, list exceptions and explain reason for increase/change (Type Here):		
 Is one or more of the following risk reduction practices in place at the site: (a) There is minimal reliance on natural attenuation of leachate due to the presence of an effective waste liner and active leachate collection/treatment; or (b) There is a predictive monitoring program in-place (modeled indicator concentrations projected over time for key locations); or (c) The site meets the following two conditions (typically achieved after 15 years or longer of site operation): <i>i</i>. The site has developed stable leachate mound(s) and stable leachate plume geometry/concentrations; and <i>ii</i>. Seasonal and annual water levels and water quality fluctuations are well understood. 	• Yes O No	Note which practice(s):	□ (a) ⊠ (b) □ (c)	
9) Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	 ○ Yes ● No ○ Not Applicable 			

Groundwater CEP Declaration:

I am a licensed professional Engineer or a registered professional geoscientist in Ontario with expertise in hydrogeology, as defined in Appendix D under Instructions. Where additional expertise was needed to evaluate the site monitoring data, I have relied on individuals who I believe to be experts in the relevant discipline, who have co-signed the compliance monitoring report or monitoring program status report, and who have provided evidence to me of their credentials.

I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended), and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to *ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories,* or as amended from time to time by the ministry.

If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature and will be rectified for the next monitoring/reporting period. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:

27-Apr-2	015
----------	-----

Recommendations:

Based on my	v technical	review of the	monitoring	results for t	the waste di	sposal site:
Daseu oli ili	y technicai	leview of the	monitoring	results for	ine waste ui	spusai site.

No changes to the monitoring program are recommended	
The following change(s) to the	
No Changes to site design and operation are recommended	Type Here
The following change(s) to the	

Name:	Stephen J. Taziar, P.Eng				
Seal:	Add Image				
Signature:	Date: 27-Apr-2015				
CEP Contact Information:	Type Here				
Company:	WSP Canada Inc.				
Address:	126 Don Hillock Drive, Suite 2, Aurora, ON, L4G 0G9				
Telephone No.:	(905) 750-3080 Fax No. : (905) 727		(905) 727-0463		
E-mail Address:	stephen.taziar@wspgroup.com				
Co-signers for additional expertise provided:					
Signature:		Date:	Select Date		
Signature:		Date:	Select Date		