

October 21, 2015

Lyndsay Waller, B.Sc., EP The Regional Municipality of Durham 605 Rossland Road East P.O. Box 623 Whitby, Ontario L1N 6A3

Re: Soil Testing Plan Results and Summary Durham York Energy Centre – 2015 Soil Sampling Plots Project No. 111-26648-00-100A-0414013

Dear Ms. Waller:

WSP Canada Inc. (WSP) was retained by The Regional Municipality of Durham (Durham) to conduct soil sampling as detailed in The *Durham York Energy Centre Soils Testing Plan* (Soil Testing Plan) document which was approved by the Ministry of the Environment and Climate Control (MOECC) after a second revision on February 8, 2013. The Soil Testing Plan was prepared to satisfy Conditions 7(10), 13(4) and 15(4) of Certificate of Approval #7306-8FDKNX (CofA). The preparation of this report has been completed within one (1) month of receipt of the laboratory results, in accordance with Condition 15(4) of the CofA.

1. BACKGROUND

The Durham York Energy Centre (DYEC) is an energy from municipal solid waste facility, currently operating in the Municipality of Clarington, Ontario. The site property is located on the west side of Osborne Road, southeast of the Courtice Road and Highway 401 interchange, and north of the Courtice Water Pollution Control Plant (CWPCP) and the CN Railway, as shown in **Figure 1**. Approval for the operation of the DYEC was received from the MOECC under the *Environmental Assessment Act* (EPA) on November 3, 2010. Three (3) applications for CofA under the EPA for waste; air and noise; and stormwater were approved as a multi-media CofA (#7306-8FDKNX) by the MOECC on June 28, 2011.

During the baseline study undertaken in the Environmental Assessment (EA) for the DYEC, 23 soil samples were collected at 17 sampling locations from areas surrounding the site. The results for the parameters analyzed during the baseline study satisfied the Table 1 Standards, where applicable; and the results of the baseline study determined the appropriate analysis suite that should be included in the Soil Testing Plan.

WSP Canada Inc. 126 Don Hillock Drive. Unit 2 Aurora, Ontario L4G 4G9 www.wspgroup.com

The first stage of the Soil Testing Plan was undertaken in August 2013 by WSP (then GENIVAR) to quantify background (baseline) contaminant concentrations prior to the operation of the DYEC. The DYEC was under construction during the 2013 soil sampling event and, as per the Soil Testing Plan, only the upwind and downwind locations were sampled.

The soil sampling event completed in August 2015 is representative of the Year 1 operation of the facility, as defined in the Soil Testing Plan. This sampling event incorporated the previously established upwind and downwind locations, sampled in 2013, and included a new on-site sampling location near the downwind DYEC property line. The principal objective of the soil sampling conducted during this portion of the Soil Testing Plan is to determine if the first year of operation at the DYEC has altered parameter concentrations within the surficial soils in comparison to: (i) the baseline data collected in 2013, ii) the Table 1 Standards, and iii) between upwind, property line, and downwind locations.

2. METHODOLOGY

2.1 PLOT SET-UP PROCEDURES

Ambient air monitoring stations have already been established on the DYEC property and at the upwind and downwind sampling locations; and, in accordance with Section 13 (4) (a) of the CofA, the Soil Testing Plot locations were positioned in close proximity to the ambient monitoring stations. WSP field staff and Durham representatives met at the DYEC on August 25, 2015 and established the new soil sampling plot location near the existing ambient air monitoring station in the northeast corner of the DYEC property.

The upwind plot is established on the CWPCP property, which is located approximately one (1) kilometer (km) south of the DYEC. The ambient air monitoring station and soil sampling plot are positioned near the western extent of the CWPCP property, as shown in **Figure 2**. The downwind ambient air monitoring station and sampling plot are located on the western extent of a parcel of private property leased by Durham. The downwind property is located on the southeast corner of Baseline and Rundle Roads in Clarington, approximately 2.5 kms from the DYEC, as shown in **Figure 3**. The newly established DYEC sampling plot is located along the eastern extent of the DYEC property fronting Osborne Road, north of the main staff entrance and south of Energy Drive, in a newly landscaped area. The newly established DYEC sampling plot location can be seen on **Figure 4**.

Once the sample plot location was established on the DYEC property, and the upwind and downwind plots were re-established with the Durham representatives, WSP field staff began constructing the soil sampling plots. The four corners of the grid were laid out using a cloth measuring tape, creating a ten meter by ten meter

square. Metal posts were installed in the ground at each of the four (4) corners to mark the outer parameters of the grid. Nine, 3.3 m by 3.3 m, squares were then created within the ten meter squared box, which were then marked with wooden stakes that were pounded into the ground for reference. At the DYEC and upwind sample locations, string was then wrapped around the four corner posts and the twelve inner stakes, which helped to define the exact boundaries of the grid segments. Tall grasses and shrubs restricted string from being used at the downwind location, so extra attention was paid to the grid boundaries to ensure accurate sampling. The entire grid setup was located and again left in place at the downwind location because it is positioned in an area that was hidden from the public and is not likely to be disturbed. The upwind location was again removed except for the southeast corner post which will continue to be used as a reference location for future sampling events. The DYEC grid infrastructure was removed except for the northwest corner post which will continue to be used as a reference location for future sampling events. The respective sample grid construction are shown in the Photo **log**, within the Appendix.

The sample grids were measured from a fixed point to ensure that reassembly can occur in the exact location during subsequent sampling events should the metal post used for reference be removed. WSP personnel located UTM referenced mapping and found the fixed points that were measured by staff in the field. This procedure allowed for a more accurate UTM reference, compared to a hand held GPS unit.

2.2 SOIL SAMPLING

Once the plot grids were established, the physical soil sampling was carried out. WSP field staff used a stainless steel sampling probe to collect an equal quantity of soil at each of the nine (9) subplots within the respective grids. The probe was decontaminated with the use of a specialized inert detergent mixed with water, and was rinsed with de-ionized water, between sampling at each of the nine (9) segments of the three plots. The soil from each grid was placed into a bucket which had been decontaminated before use and was cleaned again between the plot locations. Nitrile gloves were replaced after each plot sample was collected to reduce the potential for cross-contamination of the samples. Sample collection activities can be seen in the attached **Photo log**.

An equivalent quantity of soil was collected from each segment of the three (3) plot grids from a depth of zero (0) to two (2) centimeters below ground surface for a total of 870 ml of sample per location. The entire contents of the bucket was gently mixed to create a composite sample and then placed into the laboratory supplied glass jars. The sample jars were stored at a temperature of less than 10 °C and handled under chain of custody procedures until received at the laboratory. The laboratory supplied four, amber coloured, glass jars (three 120 ml jars, one 250 ml jar) to submit for analysis. A total of three (3) soil samples were submitted for analysis to AGAT

Laboratories (AGAT), located in Mississauga, Ontario. AGAT is a Canadian Association for Laboratory Accreditation (CALA) certified laboratory as required in the Soil Testing Plan. The samples were analysed for select metal parameters, PAHs, and PCDDs/PCDFs as outlined in the approved Soil Testing Plan. It should be noted that the required methyl mercury analysis was subcontracted by AGAT to Fleet Research Ltd (Fleet) of Winnipeg, Manitoba. Fleet is accredited to complete methyl mercury analysis. AGAT is accredited to complete the remaining analyses.

2.3 QUALITY ASSURANCE AND QUALITY CONTROL

Prior to sampling, the sample jars were inspected to ensure that the Teflon liners under the lids were in place and that the jars were clean and unused. The sample containers were labelled with the sample identifications, the project number, and the sampling date and time. A laboratory supplied chain of custody was completed. One (1) copy of the chain of custody was left with the samples at the laboratory, and one (1) copy was retained for the project file.

As part of the quality assurance/quality control (QA/QC) program for the project, one (1) field-prepared duplicate sample was collected by WSP at each of the three (3) sample plot grids. As instructed by the MOECC in The Soil Testing Plan document, Durham representatives retained the three (3) duplicate samples and have stored them in a cool, dark, dry place. It is noted that lengthy storage periods of the soil samples in excess of the storage times specified in the applicable MOECC reference document will affect the laboratory results for some parameters, if analysis of the duplicate samples is carried out in the future.

In accordance with Section 3.5 of the Soils Testing Plan, sample handling, container requirements for parameter analysis, storage, and preservation requirements were carried out in accordance with the reference document Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act by MOECC Laboratory Services Branch July 1, 2011. Sample handling and storage requirements are described in the reference document in Table A: Soil and Sediment Sample Handling and Storage Requirements (Table A). AGAT has also established its own recommended holding times for the various parameter suites. Table 2-1 below was prepared to provide the recommended sample hold times from Table A of the reference document and the AGAT sample holding times related to soil.

H:\Proj\11\26648-00\100A Monitoring\0414013\Wp\DYEC - 2015 Soil Testing Results.docx

Table 2-1: Sample Holding Times

PARAMETER/GROUP	AGAT LABORATORIES HOLDING TIME	PROTOCOL - MOE LAB SERVICES BRANCH HOLDING TIME
Metals	180 days	180 days
Hexavalent Chromium	28 days	30 days
Mercury/Methyl Mercury	28 days	28 days
PAHs	14 days	60 days
Dioxins/Furans	90 days	indefinite

All test results, with the exception of dioxins and furans, will be affected if/when tested after the prescribed holding times.

AGAT performed QA/QC procedures as outlined in their CALA procedures. These procedures included, but were not limited to, analysis of lab duplicates and blanks as well as analysis of surrogate recovery, as outlined in the Certificates of Analysis provided.

2.4 FIELD DOCUMENTATION

In accordance with the Soil Testing Plan, field notes were recorded by WSP field staff during the execution of the 2015 sampling event. A summary of the notes taken is provided in Table 2-2 below.

Table 2-2: Field Note Summary

NOTE CATEGORIES (AS PER MOE)	NOTES
Site name and photograph	Durham York Energy Center, site photographs are included in the attached Photo log
UTM coordinates for sample plot locations (NAD 83)	DYEC (centre of grid) – 17 680639, 4860535 Upwind (center of grid) – 17 680038, 4860021 Downwind (center of grid) – 17 681966, 4861859
Field personnel's name	Trevor Swift, C.E.T. and Stephen Heikkila, P.Eng.
Date, time and location of sample collection	August 25, 2015, 8:00 am to 3:00 pm, DYEC, upwind and downwind plot locations
Sample number/ID	DYEC grid – 'DYEC', Upwind grid – 'UPWIND', Downwind grid – 'DOWNWIND'
Whether QA/QC samples were collected	QA/QC samples were collected from the sample locations and are being held by Durham as per The Soil Testing Plan.

H:\Proj\11\26648-00\100A Monitoring\0414013\Wp\DYEC - 2015 Soil Testing Results.docx

NOTE CATEGORIES (AS PER MOE)	NOTES
Type of containers used for collection	Soil samples were submitted in three, 120 ml amber, glass jars and one, 250 ml amber, glass jar for each sample location. The sample containers were provided by AGAT.
Whether samples were preserved	No preservative was used, as specified by AGAT.
Sampling method and composite collection pattern/map of test plot area	See Section 3 - Methodology and Figures 2, 3 and 4.
Unusual site conditions	The DYEC sample location was completed within 0.3 m of Osbourne Road. The DYEC sample plot was surfaced with sod that had been installed within a six month period.
	The Downwind sample location was covered with waist high grasses and shrubs.
Weather conditions	Sun with some cloud cover, 24 degrees Celsius.

The field notes summarized above are maintained on file by WSP, if further reference is required.

3. REVIEW AND EVALUATION

The laboratory Certificates of Analysis presenting the laboratory results were received by WSP and Durham on September 25, 2015 and are attached to this report for reference.

As stated in The Soil Testing Plan, the soil samples are to be evaluated against the Table 1 Background Standards for Industrial property uses. The Table 1 Standards are considered to be representative of the upper limits of typical, province-wide background concentrations in soils that are not contaminated by point sources and are the most conservative standards for comparing soil quality data. In addition, owing to the fact that baseline data exists from the upwind and downwind sampling plots (2013 sampling program) the upwind and downwind concentrations will also be compared to the baseline data.

3.1 METALS

The metal parameters analyzed for the DYEC, upwind, and downwind sample locations satisfied the Table 1 Standards for industrial property uses. The historical baseline data appears similar to the 2015 concentrations with minor increases and decreases observed for select parameters. The results are summarized in the attached **Table 1**.

3.2 POLYCYCLIC AROMATIC HYDROCARBONS

The PAH parameters analyzed for the DYEC, upwind, and downwind sample locations satisfied the Table 1 Standards for industrial property uses. The historical baseline data reported the PAH parameters as non-detect with the exception of benzo(a)pyrene at the downwind location. A similar pattern occurred for the laboratory results in 2015 except the concentration for benzo(a)pyrene decreased from 0.11 μ g/g to 0.05 μ g/g. These results are summarized in the attached **Table 2**.

3.3 TOTAL DIOXINS AND FURANS

The Total PCDD/PCDF results for the DYEC, upwind, and downwind sample locations satisfied the Table 1 Standards for industrial property uses. The parameter concentrations in 2015 are similar to the historical baseline data, with a slight decrease at the downwind plot (1.12 to 0.606 TEQ ng/kg), and a minor increase observed at the upwind plot location (0.977 to 1.21 TEQ ng/kg). The results are summarized in the attached **Table 3**.

3.4 GENERAL REVIEW AND EVALUATION

The soil sampling results at the three (3) sample plots were generally similar to one another, and to the 2013 baseline results. Although some metal and PCDDs/PCDF parameter concentrations increased slightly compared to the 2013 baseline concentrations, it is noted that data concentration increases at the upwind location were larger compared to the downwind increases. This pattern indicates that the higher concentrations observed at the two locations, compared to the 2013 results, are attributed to natural variability of the soil, and to potential alternate off site sources, and are not attributed to the DYEC facility. This pattern will continue to be assessed with future monitoring. The parameter concentrations for the soil samples collected satisfied the Table 1 Standards.

A contingency plan is presented within the Soil Testing Plan in the event that a parameter concentration exceeds a value obtained during the baseline sampling event and if a parameter concentration exceeds the Table 1 Standards. Since the variations in the parameter concentration for 2015 are not attributed to the DYEC facility, and the parameter concentrations satisfied the Table 1 Standards, the contingency plan does not need to be implemented at the present time.

4. FUTURE MONITORING

In accordance with the testing period outlined in the Soil Testing Plan, the next soil sampling event is expected to be carried out in 2016, once the DYEC has been

operating for two (2) years. The sampling event in 2016 will be the second sampling event as part of a three (3) year evaluation program.

5. CONCLUSIONS AND RECOMMENDATIONS

The following are the conclusions of the Study:

- → The soil sampling plot grids have been established as outlined in the Soil Testing Plan. UTM coordinates are available, and at least one steel post remains securely installed at each sampling location, for reassembly during future sampling events.
- → The composite samples collected from the DYEC, upwind, and downwind sample locations satisfied the Table 1 Standards for industrial property uses.
- → The parameter concentrations for the 2015 sampling event are similar to the historical baseline data, with minor increases and decreases observed for select parameters. These parameter variations are attributed to natural variation of the soil, or to other potential off-site sources, and are not due to the operation of the facility.
- → The Region of Durham has retained a duplicate sample, collected by WSP, from each sample plot location as outlined in the Soil Testing Plan.

The following recommendation is presented:

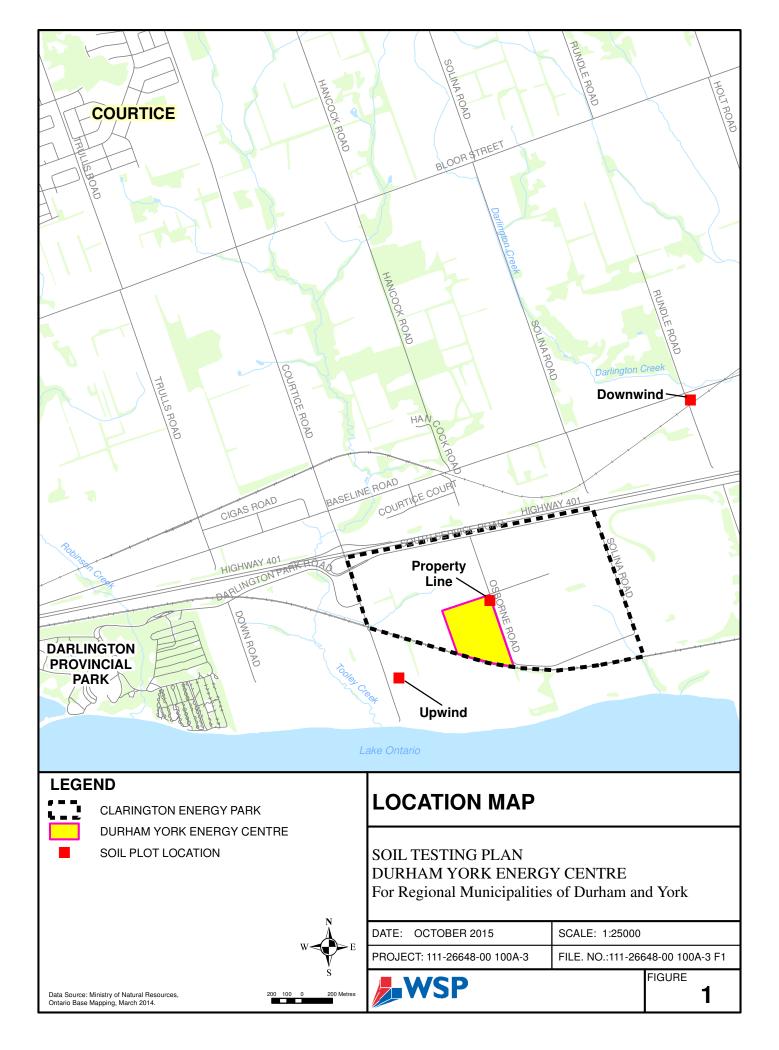
- \rightarrow The contingency plan does not need to be implemented at the present time.
- → The next soil sampling event should be carried out during the summer season, within the second year of operation (2016) at the DYEC, as part of the evaluation program.

We trust that this letter report satisfies the requirements of the Soil Sampling Plan at this time. Should you have any questions, please feel free to contact the undersigned.

Yours truly, WSP Canada Inc.

Trevor Swift, C.E.T.

TAS:nah


Stephen J. Taziar, P.Eng. Senior Project Engineer

Page 8 of 8

H:\Proj\11\26648-00\100A Monitoring\0414013\Wp\DYEC - 2015 Soil Testing Results.docx

Appendix

FIGURE 1 – SITE LOCATION MAP FIGURE 2 – UPWIND SAMPLE LOCATION MAP FIGURE 3 – DOWNWIND SAMPLE LOCATION MAP FIGURE 4 – DYEC SAMPLE LOCATION MAP TABLE 1 – SOIL CHEMICAL RESULTS – METALS TABLE 2 – SOIL CHEMICAL RESULTS – PAHS TABLE 3 – SOIL CHEMICAL RESULTS – DIOXINS AND FURANS PHOTO LOG LABORATORY CERTIFICATES OF ANALYSIS

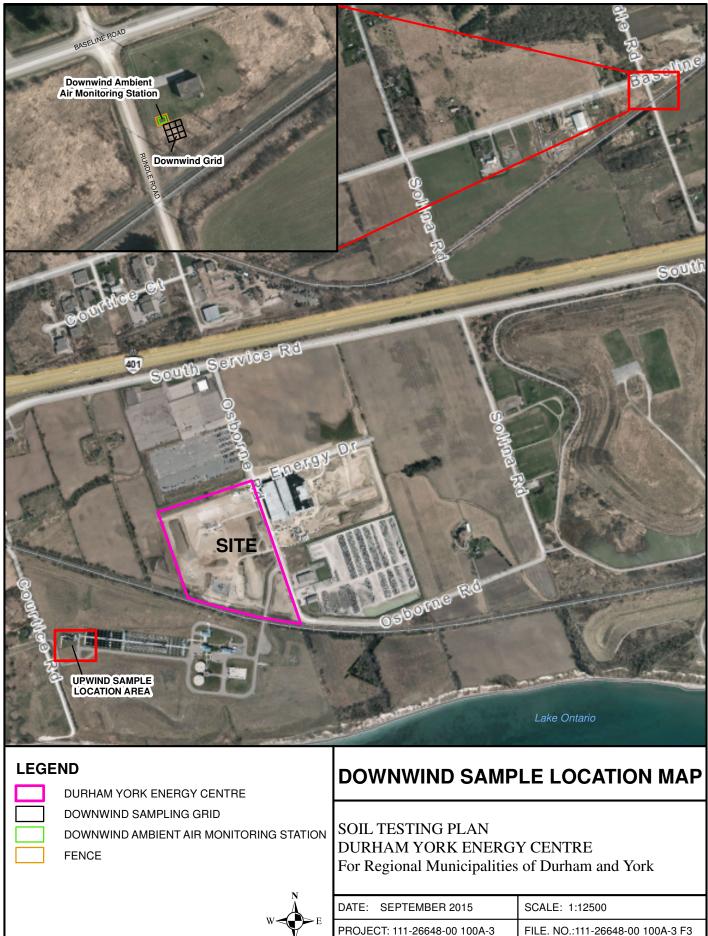
LEGEND

DURHAM YORK ENERGY CENTRE UPWIND SAMPLING GRID UPWIND AMBIENT AIR MONITORING STATION FENCE

UPWIND SAMPLE LOCATION MAP

SOIL TESTING PLAN DURHAM YORK ENERGY CENTRE For Regional Municipalities of Durham and York

PROJECT: 111-26648-00 100A-3

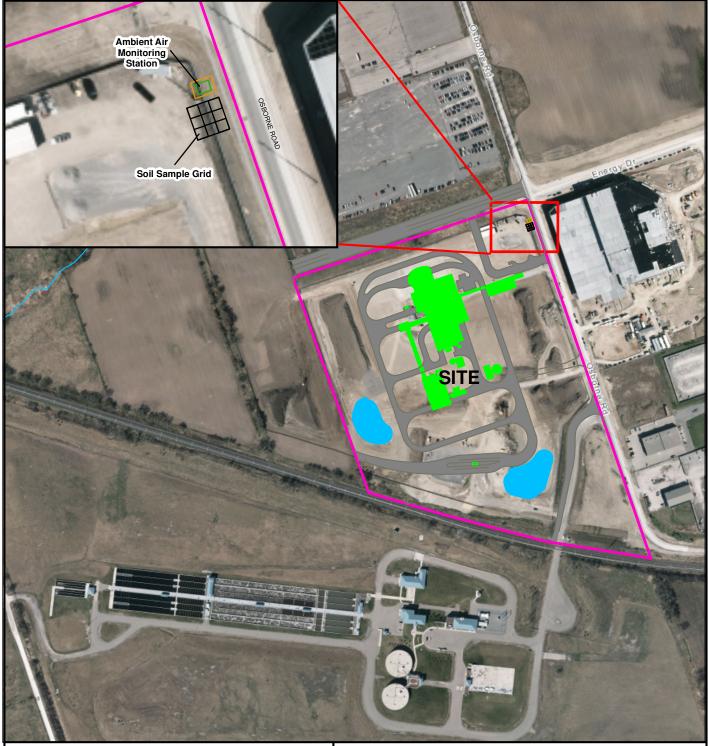

DATE: SEPTEMBER 2015

SCALE: 1:8000

FILE. NO.:111-26648-00 100A-3 F2

WSP

Data Source: Ministry of Natural Resources, Ontario Base Mapping, March 2014. Imagery, Region of Durham, 2012. FIGURE 2


PROJECT: 111-26648-00 100A-3

WSP

FIGURE

3

Data Source: Ministry of Natural Resources, Ontario Base Mapping, March 2014. Imagery, Region of Durham, 2012.

LEGEND

l		
[]
[]
[
Ī		

DURHAM YORK ENERGY CENTRE SAMPLING GRID AMBIENT AIR MONITORING STATION FENCE BUILDINGS / INFRASTRUCTURE PONDS ROADWAY

DYEC SAMPLE LOCATION MAP

SOIL TESTING PLAN DURHAM YORK ENERGY CENTRE For Regional Municipalities of Durham and York

PROJECT: 111-26648-00 100A-3

SCALE: 1:5000

FILE. NO.:111-26648-00 100A-3 F4

WSP

DATE: OCTOBER 2015

FIGURE

4

Data Source: Ministry of Natural Resources, Ontario Base Mapping, March 2014. Imagery, Region of Durham, 2012.

TABLE 1SOIL CHEMICAL RESULTS - MetalsDURHAM YORK ENERGY CENTRE - SOIL TESTING PLAN

PARAMETER	SGSS	UNITS	UPV	VIND	DYEC	DOW	WIND
PARAMETER	TABLE 1	UNITS	Aug-13	Aug-15	Aug-15	Aug-13	Aug-15
Antimony	1.3	µg/g	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	18	µg/g	2	2	2	3	3
Barium	220	µg/g	87	76	54	68	59
Beryllium	2.5	µg/g	0.5	0.6	0.5	<0.5	0.5
Boron	36	µg/g	6	7	5	5	7
Cadmium	1.2	µg/g	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	21	µg/g	6.8	7.1	4.5	4.8	4.9
Chromium - total	70	µg/g	18	20	16	14	15
Chromium - hexavalent	0.66	µg/g	<0.2	<0.2	<0.2	<0.2	<0.2
Copper	92	µg/g	15	12	9	11	9
Lead	120	µg/g	10	9	10	13	12
Molybdenum	2	µg/g	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	82	µg/g	16	13	9	11	9
Phosphorus		µg/g	729	815	911	609	668
Selenium	1.5	µg/g	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	0.5	µg/g	<0.4	<0.4	<0.4	<0.4	<0.4
Thallium	1	µg/g	<0.4	<0.4	<0.4	<0.4	<0.4
Tin		µg/g	<1	<1	1.00	<1	<1
Vanadium	86	µg/g	27	29	23	24	26
Zinc	290	µg/g	63	58	54	51	49
Mercury	0.27	µg/g	<0.10	<0.10	<0.10	<0.10	<0.10
Methyl Mercury (as Hg)		ng/g	<1.3	<0.4	0.75	<1.3	<0.4

NOTES: 1) SGSS Table 1 = Soil, Ground Water and Sediment Standards for Use Under Condition for Res/Park/Instit/Ind/Com./Comm Property Uses, Part XV.1 of the Environmental Protection Act (April 2011) - Table 1: Full Depth Generic Site Condition Standards (Background).

2) Blank - Indicates a Standard does not exist in SGSS Table 1 for the parameter.

TABLE 2SOIL CHEMICAL RESULTS - Polycyclic Aromatic HydrocarbonsDURHAM YORK ENERGY CENTRE - SOIL TESTING PLAN

PARAMETER	SGSS		UPV	VIND	DYEC DOWN		WIND
	TABLE 1	UNITS	Aug-13	Aug-15	Aug-15	Aug-13	Aug-15
1,2-Benzofluorene		µg/g	<0.05	<0.05	<0.05	<0.05	<0.05
2,3-Benzofluorene		µg/g	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	0.12	µg/g	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	0.16	µg/g	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	0.3	µg/g	<0.05	<0.05	<0.05	0.11	0.05

NOTES: 1) SGSS Table 1 = Soil, Ground Water and Sediment Standards for Use Under Condition for Res/Park/Instit/Ind/Com./Comm Property Uses, Part XV.1 of the Environmental Protection Act (April 2011) - Table 1: Full Depth Generic Site Condition Standards (Background).

2) PAH = Polycyclic Aromatic Hydrocarbons

3) Blank - Indicates a Standard does not exist in SGSS Table 1 for the parameter.

4) 1,2-Benzofluorene is a synonym for Benzo(a)Fluorene

5) 2,3-Benzofluorene is a synonym for Benzo(b)Fluorene

TABLE 3 SOIL CHEMICAL RESULTS - Dioxins & Furans DURHAM YORK ENERGY CENTRE - SOIL TESTING PLAN

	SGSS		UPV	VIND	DYEC	DOW	WIND
PARAMETER	TABLE 1	UNITS	Aug-13	Aug-15	Aug-15	Aug-13	Aug-15
2,3,7,8-Tetra CDD		ng/kg	<0.5	0.2	<0.2	<0.4	<0.1
1,2,3,7,8-Penta CDD		ng/kg	<0.6	0.5	0.3	<0.6	<0.2
1,2,3,4,7,8-Hexa CDD		ng/kg	<0.6	0.6	0.4	<0.5	0.2
1,2,3,6,7,8-Hexa CDD		ng/kg	<0.6	0.5	<0.3	<0.5	0.6
1,2,3,7,8,9-Hexa CDD		ng/kg	<0.5	0.6	0.9	0.5	0.5
1,2,3,4,6,7,8-Hepta CDD		ng/kg	8.2	7.9	12.0	17	11
Octa CDD		ng/kg	57	60	95	118	86
2,3,7,8-Tetra CDF		ng/kg	<0.4	0.3	<0.2	<0.3	0.2
1,2,3,7,8-Penta CDF		ng/kg	<0.4	0.4	<0.2	<0.8	0.2
2,3,4,7,8-Penta CDF		ng/kg	<0.4	0.5	0.2	<0.6	0.3
1,2,3,4,7,8-Hexa CDF		ng/kg	<0.6	0.6	0.5	<0.4	0.6
1,2,3,6,7,8-Hexa CDF		ng/kg	<0.6	0.3	0.3	<0.4	0.4
2,3,4,6,7,8-Hexa CDF		ng/kg	<0.6	0.4	0.4	0.7	0.3
1,2,3,7,8,9-Hexa CDF		ng/kg	<0.8	0.4	<0.3	<0.5	<0.2
1,2,3,4,6,7,8-Hepta CDF		ng/kg	2.1	2.2	2.7	4.9	2.6
1,2,3,4,7,8,9-Hepta CDF		ng/kg	<1	<0.3	0.30	<0.6	<0.2
Octa CDF		ng/kg	3	6	9	9	8
Total Tetrachlorodibenzodioxins		ng/kg	1.3	0.7	0.3	1.4	0.4
Total Pentachlorodibenzodioxins		ng/kg	<0.6	2.5	2.3	2.3	1.8
Total Hexachlorodibenzodioxins		ng/kg	3.6	3.7	3.3	4.3	3.2
Total Heptachlorodibenzodioxins		ng/kg	17.7	10.2	15	31.1	12.7
Total PCDDs		ng/kg	80	76.8	116	158	104
Total Tetrachlorodibenzofurans		ng/kg	3.1	2	3.8	4.7	2.1
Total Pentachlorodibenzofurans		ng/kg	1.3	2.3	3.3	3.3	2.5
Total Hexachlorodibenzofurans		ng/kg	2.4	1.8	1.2	6.5	1.3
Total Heptachlorodibenzofurans		ng/kg	5	3.3	4.9	12.3	4.8
Total PCDFs		ng/kg	14	15.5	21.7	36	19.1
2,3,7,8-Tetra CDD (TEF 1.0)		TEQ	0.25	0.195	0.116	0.2	0.0456
1,2,3,7,8-Penta CDD (TEF 1.0)		TEQ	0.3	0.47	0.262	0.3	0.0767
1,2,3,4,7,8-Hexa CDD (TEF 0.1)		TEQ	0.03	0.0628	0.0372	0.025	0.0203
1,2,3,6,7,8-Hexa CDD (TEF 0.1)		TEQ	0.03	0.0525	0.0129	0.025	0.0605
1,2,3,7,8,9-Hexa CDD (TEF 0.1)		TEQ	0.025	0.0646	0.0871	0.0544	0.0535
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)		TEQ	0.0819	0.0788	0.12	0.17	0.109
Octa CDD (TEF 0.0003)		TEQ	0.0172	0.0179	0.0285	0.0355	0.0259
2,3,7,8-Tetra CDF (TEF 0.1)		TEQ	0.02	0.0265	0.0106	0.015	0.0224
1,2,3,7,8-Penta CDF (TEF 0.03)		TEQ	0.006	0.0405	0.0118	0.012	0.017
2,3,4,7,8-Penta CDF (TEF 0.3)		TEQ	0.06	0.0135	0.00697	0.09	0.0097
1,2,3,4,7,8-Hexa CDF (TEF 0.1)		TEQ	0.03	0.0623	0.0499	0.02	0.0576
1,2,3,6,7,8-Hexa CDF (TEF 0.1)		TEQ	0.03	0.0302	0.03	0.02	0.0369
2,3,4,6,7,8-Hexa CDF (TEF 0.1)		TEQ	0.03	0.0372	0.0427	0.072	0.0286
1,2,3,7,8,9-Hexa CDF (TEF 0.1)		TEQ	0.04	0.0377	0.0154	0.025	0.0122
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)		TEQ	0.0508	0.0219	0.027	0.049	0.0261
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)		TEQ	0.005	0.00156	0.00266	0.003	0.00116
Octa CDF (TEF 0.0003)		TEQ	0.00081	0.00184	0.00256	0.00284	0.00252
Total PCDDs and PCDFs (TEQ)	7	TEQ ng/kg	0.977	1.21	0.864	1.12	0.606

NOTES: 1) SGSS Table 1 = Soil, Ground Water and Sediment Standards for Use Under Condition for Res/Park/Instit/Ind/Com./Comm Property Uses, Part XV.1 of the Environmental Protection Act (April 2011) - Table 1: Full Depth Generic Site Condition Standards (Background).

2) Blank - Indicates a Standard does not exist in SGSS Table 1 for the parameter.

3) TEQ - Toxic Equivalency

4) The TEQ standard for total dioxins and furans in SGSS Table 1 is listed as 0.000007, for values in µg/g; which is equal to 7 for values in ng/kg.

Site Photographs Soil Sampling Plan Durham York Energy Center, Clarington, Ontario

Photograph-1: View of WSP field staff assembling the DYEC sampling location with the ambient air monitoring station in the background.

Photograph-3: View of WSP field staff collecting the sample from the upwind sampling location with the ambient air monitoring station in the foreground.

Photograph-2: View of WSP field staff collecting the composite sample from the DYEC sampling location with the staff parking lot in the background.

Photograph-4: View of a composite sample before being placed the laboratory supplied jars.

Photograph-5: View of WSP field staff collecting the composite sample from the downwind sampling location.

Photograph-6: View of WSP field staff sampling at the downwind location.

AGAT WORK ORDER: 15T012038 PROJECT: 111-26648-00, 100A, 0414013 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Steve Taziar

SAMPLED BY: Trevor Swift

DATE RECEIVED: 2015-08-26						DATE REPORTED: 2015-09-25
			DVEO		DOWNLWIND	
		SAMPLE DESCRIPTION:	DYEC		DOWN WIND	
		SAMPLE TYPE:	Soil	Soil	Soil	
_		DATE SAMPLED:	8/25/2015	8/25/2015	8/25/2015	
Parameter	Unit	G/S RDL	6911073	6911099	6911103	
Antimony	µg/g	0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	1	2	2	3	
Barium	µg/g	2	54	76	59	
Beryllium	µg/g	0.5	0.5	0.6	0.5	
Boron	µg/g	5	5	7	7	
Cadmium	µg/g	0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	2	16	20	15	
Chromium, Hexavalent	µg/g	0.2	<0.2	<0.2	<0.2	
Cobalt	µg/g	0.5	4.5	7.1	4.9	
Copper	µg/g	1	9	12	9	
₋ead	µg/g	1	10	9	12	
Mercury	µg/g	0.10	<0.10	<0.10	<0.10	
Nolybdenum	µg/g	0.5	<0.5	<0.5	<0.5	
Nickel	µg/g	1	9	13	9	
Phosphorus	µg/g	5	911	815	668	
Selenium	µg/g	0.8	<0.8	<0.8	<0.8	
Silver	µg/g	0.4	<0.4	<0.4	<0.4	
Fhallium	µg/g	0.4	<0.4	<0.4	<0.4	
- in	µg/g	1	1	<1	<1	
Vanadium	µg/g	1	23	29	26	
Zinc	µg/g	5	54	58	49	

Metals Scan + Ho & CrVI (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6911073-6911103

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 15T012038 PROJECT: 111-26648-00, 100A, 0414013 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Steve Taziar

SAMPLED BY:Trevor Swift

	1,2- and 2,3-Benzofluorene [soil]										
DATE RECEIVED: 2015-08-26							DATE REPORTED: 2015-09-25				
		SAMPLE DES	CRIPTION:	DYEC	UP WIND	DOWN WIND					
		SAM	PLE TYPE:	Soil	Soil	Soil					
		DATES	SAMPLED:	8/25/2015	8/25/2015	8/25/2015					
Parameter	Unit	G / S	RDL	6911073	6911099	6911103					
1,2-Benzofluorene (Toronto)	µg/g		0.05	<0.05	<0.05	<0.05					
2,3-Benzofluorene (Toronto)	µg/g		0.05	<0.05	<0.05	<0.05					
Moisture Content	%		0.1	5.23	5.45	5.32					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6911073-6911103 Results are based on the dry weight of the soil.

Certified By:

AGAT WORK ORDER: 15T012038 PROJECT: 111-26648-00, 100A, 0414013 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Steve Taziar

SAMPLED BY: Trevor Swift

DATE RECEIVED: 2015-08-26						DATE REPORTED: 2015-09-25
		SAMPLE DESCRIPTION:	DYEC	UP WIND	DOWN WIND	
		SAMPLE TYPE:	Soil	Soil	Soil	
		DATE SAMPLED:	8/25/2015	8/25/2015	8/25/2015	
Parameter	Unit	G/S RDL	6911073	6911099	6911103	
Fluorene	µg/g	0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.05	<0.05	<0.05	0.05	
Moisture Content	%	0.1	8.2	13.5	18.5	
Surrogate	Unit	Acceptable Limits				
Chrysene-d12	%	50-140	89	80	93	

O. Reg. 153(511) - PAHs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6911073-6911103 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Certified By:

AGAT WORK ORDER: 15T012038 PROJECT: 111-26648-00, 100A, 0414013 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

ATTENTION TO: Steve Taziar

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:

SAMPLED BY:Trevor Swift O. Reg 153 Dioxins & Furans (Soil, WHO 2005)

DATE RECEIVED: 2015-08-26

DATE RECEIVED: 2015-08-26							DAT	E REPORTED: 2015-09-25
		SAMPLE DESCRIPTION:	DYEC		UP WIND		DOWN WIND	
		SAMPLE TYPE:	Soil		Soil		Soil	
		DATE SAMPLED:	8/25/2015		8/25/2015		8/25/2015	
Parameter	Unit	G/S RDL	6911073	RDL	6911099	RDL	6911103	
2,3,7,8-Tetra CDD	ng/kg	0.2	<0.2	0.1	0.2	0.1	<0.1	
1,2,3,7,8-Penta CDD	ng/kg	0.2	0.3	0.2	0.5	0.2	<0.2	
1,2,3,4,7,8-Hexa CDD	ng/kg	0.3	0.4	0.2	0.6	0.2	0.2	
1,2,3,6,7,8-Hexa CDD	ng/kg	0.3	<0.3	0.2	0.5	0.2	0.6	
1,2,3,7,8,9-Hexa CDD	ng/kg	0.3	0.9	0.2	0.6	0.2	0.5	
1,2,3,4,6,7,8-Hepta CDD	ng/kg	0.3	12.0	0.3	7.9	0.4	10.9	
Octa CDD	ng/kg	0.8	95.1	0.5	59.7	0.6	86.3	
2,3,7,8-Tetra CDF	ng/kg	0.2	<0.2	0.2	0.3	0.1	0.2	
1,2,3,7,8-Penta CDF	ng/kg	0.2	<0.2	0.2	0.4	0.1	0.2	
2,3,4,7,8-Penta CDF	ng/kg	0.2	0.2	0.2	0.5	0.1	0.3	
1,2,3,4,7,8-Hexa CDF	ng/kg	0.2	0.5	0.2	0.6	0.2	0.6	
1,2,3,6,7,8-Hexa CDF	ng/kg	0.2	0.3	0.2	0.3	0.2	0.4	
2,3,4,6,7,8-Hexa CDF	ng/kg	0.2	0.4	0.2	0.4	0.2	0.3	
1,2,3,7,8,9-Hexa CDF	ng/kg	0.3	<0.3	0.3	0.4	0.2	<0.2	
1,2,3,4,6,7,8-Hepta CDF	ng/kg	0.2	2.7	0.2	2.2	0.2	2.6	
1,2,3,4,7,8,9-Hepta CDF	ng/kg	0.3	0.3	0.3	<0.3	0.2	<0.2	
Octa CDF	ng/kg	0.3	8.5	0.6	6.1	0.3	8.4	
Total Tetrachlorodibenzodioxins	ng/kg	0.2	0.3	0.1	0.7	0.1	0.4	
Total Pentachlorodibenzodioxins	ng/kg	0.2	2.3	0.2	2.5	0.2	1.8	
Total Hexachlorodibenzodioxins	ng/kg	0.3	3.3	0.2	3.7	0.2	3.2	
Total Heptachlorodibenzodioxins	ng/kg	0.3	15.0	0.3	10.2	0.4	12.7	
Total PCDDs	ng/kg	0.8	116	0.5	76.8	0.6	104	
Total Tetrachlorodibenzofurans	ng/kg	0.2	3.8	0.2	2.0	0.1	2.1	
Total Pentachlorodibenzofurans	ng/kg	0.2	3.3	0.2	2.3	0.1	2.5	
Total Hexachlorodibenzofurans	ng/kg	0.3	1.2	0.3	1.8	0.2	1.3	
Total Heptachlorodibenzofurans	ng/kg	0.3	4.9	0.3	3.3	0.2	4.8	
Total PCDFs	ng/kg	0.3	21.7	0.6	15.5	0.3	19.1	
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ		0.116		0.195		0.0456	
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ		0.262		0.470		0.0767	
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ		0.0372		0.0628		0.0203	

Certified By:

DATE REPORTED: 2015-09-25

AGAT WORK ORDER: 15T012038 PROJECT: 111-26648-00, 100A, 0414013 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Steve Taziar

SAMPLED BY: Trevor Swift

O. Reg 153 Dioxins & Furans (Soil, WHO 2005)

DATE RECEIVED: 2015-08-26

SAMPLING SITE:

CLIENT NAME: WSP CANADA INC.

DATE RECEIVED: 2015-08-26								D	ATE REPORTED: 2015-09-25
		SAMPLE DES	CRIPTION:	DYEC		UP WIND		DOWN WIND	
		SAM	PLE TYPE:	Soil		Soil		Soil	
		DATES	SAMPLED:	8/25/2015		8/25/2015		8/25/2015	
Parameter	Unit	G/S	RDL	6911073	RDL	6911099	RDL	6911103	
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ			0.0129		0.0525		0.0605	
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ			0.0871		0.0646		0.0535	
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ			0.120		0.0788		0.109	
Octa CDD (TEF 0.0003)	TEQ			0.0285		0.0179		0.0259	
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ			0.0106		0.0265		0.0224	
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ			0.0118		0.0405		0.0170	
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ			0.00697		0.0135		0.00970	
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0499		0.0623		0.0576	
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0300		0.0302		0.0369	
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0427		0.0372		0.0286	
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ			0.0154		0.0377		0.0122	
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ			0.0270		0.0219		0.0261	
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ			0.00266		0.00156		0.00116	
Octa CDF (TEF 0.0003)	TEQ			0.00256		0.00184		0.00252	
Total PCDDs and PCDFs (TEQ)	TEQ			0.864		1.21		0.606	

Certified By:

AGAT WORK ORDER: 15T012038 PROJECT: 111-26648-00, 100A, 0414013 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Steve Taziar

SAMPLED BY: Trevor Swift

O. Reg 153 Dioxins & Furans (Soil, WHO 2005)

DATE RECEIVED: 2015-08-26					DATE F	REPORTED: 2015-09-25
		SAMPLE DESCRIPTION:	DYEC	UP WIND	DOWN WIND	
		SAMPLE TYPE:	Soil	Soil	Soil	
		DATE SAMPLED:	8/25/2015	8/25/2015	8/25/2015	
Surrogate	Unit	Acceptable Limits	6911073	6911099	6911103	
13C-2378-TCDF	%	40-130	70	73	66	
13C-12378-PeCDF	%	40-130	68	75	67	
13C-23478-PeCDF	%	40-130	80	84	77	
13C-123478-HxCDF	%	40-130	57	59	57	
13C-123678-HxCDF	%	40-130	62	66	64	
13C-234678-HxCDF	%	40-130	66	69	66	
13C-123789-HxCDF	%	40-130	69	71	70	
13C-1234678-HpCDF	%	40-130	47	50	46	
13C-1234789-HpCDF	%	40-130	58	61	58	
13C-2378-TCDD	%	40-130	70	75	70	
13C-12378-PeCDD	%	40-130	86	86	80	
13C-123478-HxCDD	%	40-130	66	74	69	
13C-123678-HxCDD	%	40-130	74	73	68	
13C-1234678-HpCDD	%	40-130	61	65	60	
13C-OCDD	%	40-130	42	45	41	

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

6911073-6911103 The results were corrected based on the surrogate percent recoveries. Total TEQ and Guideline expressed in ng/Kg TEQ.

Certified By:

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00, 100A, 0414013

SAMPLING SITE:

AGAT WORK ORDER: 15T012038 ATTENTION TO: Steve Taziar

SAMPLED BY: Trevor Swift

Soil Analysis

RPT Date: Sep 25, 2015			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 1	Acceptable Limits Recovery		1 1 1 1	eptable mits
		ld					Value	Lower	Upper		Lower	Upper],	Lower	Uppe
Metals Scan + Hg & CrVI (Soil)															
Antimony	6911073		< 0.8	< 0.8	0.0%	< 0.8	94%	70%	130%	100%	80%	120%	99%	70%	130%
Arsenic	6911073		1	1	0.0%	< 1	109%	70%	130%	93%	80%	120%	91%	70%	130%
Barium	6911073		276	267	3.3%	< 2	100%	70%	130%	96%	80%	120%	86%	70%	130%
Beryllium	6911073		0.9	0.9	0.0%	< 0.5	100%	70%	130%	102%	80%	120%	100%	70%	130%
Boron	6911073		9	8	11.8%	< 5	80%	70%	130%	100%	80%	120%	98%	70%	130%
Cadmium	6911073		< 0.5	< 0.5	0.0%	< 0.5	110%	70%	130%	114%	80%	120%	102%	70%	130%
Chromium	6911073		56	55	1.8%	< 2	99%	70%	130%	94%	80%	120%	96%	70%	130%
Chromium, Hexavalent	6905128		<0.2	<0.2	0.0%	< 0.2	99%	90%	110%	100%	90%	110%	100%	70%	130%
Cobalt	6911073		14.5	13.7	5.7%	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%
Copper	6911073		39	38	2.6%	< 1	91%	70%	130%	89%	80%	120%	86%	70%	130%
Lead	6911073		9	9	0.0%	< 1	103%	70%	130%	90%	80%	120%	88%	70%	130%
Mercury	6911073		< 0.10	< 0.10	0.0%	< 0.10	98%	70%	130%	93%	80%	120%	84%	70%	130%
Molybdenum	6911073		< 0.5	< 0.5	0.0%	< 0.5	104%	70%	130%	104%	80%	120%	100%	70%	130%
Nickel	6911073		32	30	6.5%	< 1	102%	70%	130%	98%	80%	120%	98%	70%	130%
Phosphorus	6911073		1120	1080	3.6%	< 5	102%	80%	120%	99%	80%	120%	99%	70%	130%
Selenium	6911073		< 0.8	1.0	NA	< 0.8	93%	70%	130%	97%	80%	120%	100%	70%	130%
Silver	6911073		< 0.4	< 0.4	0.0%	< 0.4	103%	70%	130%	100%	80%	120%	100%	70%	130%
Thallium	6911073		< 0.4	< 0.4	0.0%	< 0.4	96%	70%	130%	99%	80%	120%	100%	70%	130%
Tin	6911073		1	1	0.0%	< 1	116%	70%	130%	105%	80%	120%	106%	70%	130%
Vanadium	6911073		67	64	4.6%	< 1	103%	70%	130%	105%	80%	120%	101%	70%	130%
Zinc	6911073		100	97	3.0%	< 5	98%	70%	130%	91%	80%	120%	93%	70%	130%

Comments: NA Signifies Not Applicable.

RPD Qualifier for Selenium: As the average value for the sample and a duplicate is less than 5X RDL, lab's RPD acceptance criteria is not applicable.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00, 100A, 0414013

SAMPLING SITE:

AGAT WORK ORDER: 15T012038 ATTENTION TO: Steve Taziar

SAMPLED BY: Trevor Swift

Trace Organics Analysis

				•	0		,								
RPT Date: Sep 25, 2015			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery	1.10	eptable nits
	Baton	ld		·			value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Fluorene	6905137		< 0.05	< 0.05	0.0%	< 0.05	92%	50%	140%	81%	50%	140%	57%	50%	140%
Anthracene	6905137		< 0.05	< 0.05	0.0%	< 0.05	93%	50%	140%	79%	50%	140%	74%	50%	140%
Benzo(a)pyrene	6905137		< 0.05	< 0.05	0.0%	< 0.05	98%	50%	140%	81%	50%	140%	76%	50%	140%
1,2- and 2,3-Benzofluorene [soil]															
1,2-Benzofluorene (Toronto)	1	NA				< 0.05	NA	60%	130%	63%	60%	130%	NA	60%	130%
2,3-Benzofluorene (Toronto)	1	NA				< 0.05	NA	60%	130%	67%	60%	130%	NA	60%	130%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 14

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00, 100A, 0414013

SAMPLING SITE:

AGAT WORK ORDER: 15T012038 ATTENTION TO: Steve Taziar SAMPLED BY:Trevor Swift

Ultra Trace Analysis

							,								
RPT Date: Sep 25, 2015			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery	1 1 1 1	ptable nits
		iu	-				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg 153 Dioxins & Furans (Soi	I, WHO 2	005)													
2,3,7,8-Tetra CDD	1	6922612	<0.1	<0.1	0.0%	< 0.1	106%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,7,8-Penta CDD	1	6922612	0.2	0.2	0.0%	< 0.2	110%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,4,7,8-Hexa CDD	1	6922612	0.4	0.4	0.0%	< 0.4	109%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,6,7,8-Hexa CDD	1	6922612	0.4	0.3	28.6%	< 0.4	110%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,7,8,9-Hexa CDD	1	6922612	<0.4	<0.4	0.0%	< 0.4	107%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,4,6,7,8-Hepta CDD	1	6922612	0.9	0.9	0.0%	< 0.5	106%	40%	130%	NA	40%	130%	NA	40%	130%
Octa CDD	1	6922612	3.0	2.7	10.5%	< 0.3	112%	40%	130%	NA	40%	130%	NA	40%	130%
2,3,7,8-Tetra CDF	1	6922612	0.49	0.44	10.8%	< 0.1	108%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,7,8-Penta CDF	1	6922612	0.5	0.5	0.0%	< 0.1	105%	40%	130%	NA	40%	130%	NA	40%	130%
2,3,4,7,8-Penta CDF	1	6922612	0.3	0.3	0.0%	< 0.1	108%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,4,7,8-Hexa CDF	1	6922612	0.44	0.47	6.6%	< 0.1	106%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,6,7,8-Hexa CDF	1	6922612	0.3	0.3	0.0%	< 0.1	106%	40%	130%	NA	40%	130%	NA	40%	130%
2,3,4,6,7,8-Hexa CDF	1	6922612	<0.1	<0.2	NA	< 0.1	106%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,7,8,9-Hexa CDF	1	6922612	<0.2	<0.2	0.0%	< 0.2	102%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,4,6,7,8-Hepta CDF	1	6922612	0.5	0.5	0.0%	< 0.1	105%	40%	130%	NA	40%	130%	NA	40%	130%
1,2,3,4,7,8,9-Hepta CDF	1	6922612	<0.2	<0.2	0.0%	< 0.2	106%	40%	130%	NA	40%	130%	NA	40%	130%
Octa CDF	1	6922612	1	0.8	22.2%	< 0.3	112%	40%	130%	NA	40%	130%	NA	40%	130%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 10 of 14

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-26648-00, 100A, 0414013

SAMPLING SITE:

AGAT WORK ORDER: 15T012038 ATTENTION TO: Steve Taziar SAMPLED BY:Trevor Swift

SAMPLING SHE.		SAMPLED B1. Hevor Switt							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Soil Analysis									
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Chromium, Hexavalent	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER						
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Volybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Phosphorus	MET-93-6103	EPA SW 846-3050B & 6020A	ICP-MS						
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Tin	MET-93-6103	EPA SW 846 3050B & 6020A	ICP-MS						
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Trace Organics Analysis									
1,2-Benzofluorene (Toronto)	ORG-91-5114	EPA SW-846 3541 & 8270C	GC/MS						
2,3-Benzofluorene (Toronto)	ORG-91-5114	EPA SW-846 3541 & 8270C	GC/MS						
Moisture Content		MOE E3139	BALANCE						
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS						
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS						
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS						
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270	BALANCE						
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS						

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 111-26648-00, 100A, 0414013

SAMPLING SITE:

AGAT WORK ORDER: 15T012038 ATTENTION TO: Steve Taziar SAMPLED BY:Trevor Swift

SAMPLING SITE:		SAMPLED BY:Tr	evor Swift
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis			· ·
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.3)	HR-151-5400 HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)		EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS
1,2,3,4,0,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400 HR-151-5400		HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS
	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)			
Octa CDF (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-23478-PeCDF	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDF	HR-151-5400	EPA 1613	HRMS

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: 111-26648-00, 100A, 0414013 SAMPLING SITE: AGAT WORK ORDER: 15T012038 ATTENTION TO: Steve Taziar SAMPLED BY:Trevor Swift

OAMI EINO ONE.		OAMI LED DT. I	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

		440 De	Flett Research Ltt Salaberry Ave. Winnipeg, MB F Fax/Phone (204) 667-2505 research.ca Webpage: http://ww	R2L 0Y7					Page 7
	CLIENT:	AGAT Labs - N	Mississauga: Pro	ject 15T012	2038	Matrix:	Sediment (wet)		
		5835 Coopers Avenue	_	-		Transaction ID:	593		
		Mississauga, ON L4Z 1R	9			PO/Contract No.:	90055		
		September 9, 2015					September 23, 2015		
			Sediment by Distillation, Aqueous Id SOPs\M10240 MeHg in Sedim				ents (Version 2)		
	Detection Limit:		4 ng/g (ML)	MDL=0.1 ng/g	The MDL was det	ermined based on great	er than 7 replicates of analy h is considered a practical	rtical blanks (98%	confidence
	Estimated Uncertainty:	The estimated uncertainty of	this method has been determined	•	entration level of 0	.1 and 170 ng/g (95% c	onfidence)		
	Uncertainty.	Results authorized by Dr.	Robert J. Flett, Chief Scientist						
		Blanks		pg of MeHg in whole ethylation EPA vial	Gross Peak Area	Mean Ethylation Blank (ng/L)			
			Ethylation blank (H ₂ 0+Reagent)	0.60	2556	0.01			
			Mean Eth. Blank (last 30 runs)	0.57		0.01			
				Net pg MeHg in whole Ethylation EPA vial	Gross Peak Area		Equiv. CH Hg Conc based on current batch mean weight (0.4388g) of wet sample, ng/g (Sediment)		
			Method Blank 1	0.12	3072		0.007	1	
			Method Blank 2 Method Blank 3	-0.04 0.00	2404 2574		-0.002 0.000	ł	
			Mean Method Blank	0.03	2014		0.002	ĺ	
		Standards		MeHg Standard Added to Ethylation EPA Vial (pg CH ₃ Hg)	Gross Peak Area	Net Corrected MeHg Std Calibration Factor (units / pg)	RSD of MeHg Standard		
			Mean Value			7256	3.5		
Ql	JALITY DATA	Spike Recovery Matrix Spike (MS) and Matrix Spike Duplicate (MSD)	Sample Identification	Sample Type	Gross Peak Area	% CH ₃ Hg Recovery Used for Calculations	Wet Sample Mass (g)	Net CH ₃ Hg as Hg (ng/g-Wet- Wt)	CH₃H Recover
			(6911073D)	MS3	1619264	100%	0.466	10	91.1
			(6911073D)	MS3D	1643406	100%	0.438	11	92.9
			Mean of Recoveries						92.0
		QC Samples	FRES02 ID1201 (27.4± 3.6 ng/g)		1064708	100%	0.130		92.5
			FRES02 ID1201 (27.4± 3.6 ng/g)	Repeat Aliquot	1063919	100%	0.130		92.5
			Mean of FRES02						92.5
		Alternate Source Standard (A.S.S.)	A.S.S Alfa ID1302 (1000 ng/L)		858938	100%		<- Net CH ₃ Hg as Hg (ng/L)	100.
ID	Sampling Details	Sample ID	Date Sampled	Sample Type	Gross Peak Area	% CH ₃ Hg Recovery Used for Calculations	Weighed Wet Sample Mass (g)	Net CH3Hg as Hg (ng/g) Wet Wt. [recovery corrected]	
			1 1 05 0045		111500	92.0	0.4620	0.75	
159		6911073D	Anduct 25 2016						4
159 160		6911073D 6911099D	August 25, 2015 August 25, 2015		49009	92.0	0.4300	~ 0.34	
			August 25, 2015 August 25, 2015 August 25, 2015	DupA1		92.0 92.0	0.4300 0.4310	~ 0.34 ~ 0.31]

Methyl Mercury Results

Q:\Clients A-L\AGAT Labs - Mississauga\2015(593)\Methyl Mercury\MTSEDW092315XW3.xls

 \sim : Result below the official detection limit for this analyte in this matrix.

Dup : Duplicate - two subsamples of the same sample carried through the analytical procedure in an identical manner.

This test report shall not be reproduced, except in full, without written approval of the laboratory. Note: Results relate only to the items tested.

ISO/IEC17025:2005 Accredited with the Canadian Association for Laboratory Accreditation

M10200-1 Version 111414

MTSEDW092315XW3