FINAL REPORT

REGIONAL MUNICIPALITY OF DURHAM

WHITBY, ONTARIO

DURHAM YORK ENERGY CENTRE: 2017 SOIL TESTING REPORT

RWDI #1604066 November 20, 2017

SUBMITTED TO

Lyndsay Waller, B.Sc., EP Regional Municipality of Durham Lyndsay.Waller@Durham.ca

Regional Municipality of Durham 605 Rossland Road East P.O. Box 623

Whitby, Ontario L1N 6A3

T: 905.668.7711 | ext. 3445

SUBMITTED BY

Philippe Janisse, B.Sc., P.Geo. Project Manager | Sr. Geoscience Specialist Philippe.Janisse@rwdi.com | ext. 2617

Brent Langille, B.Sc., P.Geo. Senior Consultant | Principal Brent.Langille@rwdi.com | ext. 2618

RWDI AIR Inc. Consulting Engineers & Scientists 600 Southgate Drive Guelph, Ontario N1G 4P6

T: 519.823.1311 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America.

Ms. Lyndsay Waller, B.Sc., EP Regional Municipality of Durham 1835 Energy Drive Clarington, ON L1E 2R2

RE: 2017 Soil Testing Report Durham York Energy Centre RFP-528-2016 RWDI Reference No. 1604066, 8001

Dear Ms. Waller,

RWDI AIR Inc. (RWDI) is pleased to provide this 2017 Soil Testing Report in consideration of the Soils Testing Plan established for the Durham York Energy Centre (DYEC).

Field work associated with the 2017 Soil Testing Program was completed on August 23, 2017. The soil analytical results were received from the laboratory on October 5, 2017. A re-sampling event for analysis of benzo(a)pyrene at the downwind soil sampling site was completed on October 18, 2017 and the results of the re-sample were received from the laboratory on October 26, 2017. This report provides details of the soil testing program completed in 2017 for DYEC and an interpretation of the 2017 monitoring data, including our conclusions and recommendations. Relevant technical data are appended.

We trust that this 2017 Soil Testing Report for DYEC provides sufficient information for your requirements. Should there be any questions or comments, please contact us.

Yours very truly,

RWDI AIR Inc.

Philippe E. Janisse, B.Sc., P.Geo. Project Manager | Senior Geoscience Specialist

Attach.

EXECUTIVE SUMMARY

DYEC is an energy-from-waste facility located in the Municipality of Clarington, Regional Municipality of Durham, Ontario. DYEC is situated on the southwest corner of Osborne Road and Energy Drive. DYEC is bounded by commercial and industrial property uses to the north and east, the Canadian National Railway to the south and undeveloped lands to the west. A Location Map is presented in **Figure 1**.

DYEC is operated under a multi-media Environmental Compliance Approval 7306-8FDKNX, dated June 28, 2011 (ECA). A baseline soil quality study was undertaken as part of the Environmental Assessment (EA) to characterize background soil conditions in the vicinity of DYEC prior to its operation. The soil quality results of the baseline study satisfied the Table 1 criteria, where applicable, of the *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011)*. Per Condition 7(10) and 13 (4) of the ECA, the Soils Testing Plan (*Durham York Energy Centre Soils Testing Plan, The Regional Municipality of Durham*, dated March 7, 2014) was prepared. The Soils Testing Plan was based, in part, on the findings of the baseline soil study.

This report was prepared to satisfy the requirements of the Soils Testing Plan as well as ECA No. 7306-8FDKNX.

The following conclusions are based on the findings presented in this report.

- The soil sampling grids established at the upwind and DYEC sampling locations were constructed by RWDI personnel based on previously established metal T-fence post benchmarks installed at specific corners of the grid outline at each of the soil sampling sites. The soil sampling grid established at the downwind location was left in place from the previous sample collection efforts.
- Overall, parameter concentrations observed at the upwind, downwind, and DYEC soil sampling sites were generally comparable to historical concentrations.
- The observed soil concentration of benzo(a)pyrene (0.61 μg/g) noted at the downwind soil sampling site for the August 2017 sampling event exceeded the Table 1 criteria of the MOECC Standards (0.3 μg/g).
- Per Section 7 of the Soils Testing Plan, the soil sampling site shall be re-sampled and analyzed for parameter(s) noted to have exceeded during the original sampling event. As such, the downwind soil sampling site was re-sampled on October 18, 2017 for analysis of benzo(a)pyrene. The concentration of benzo(a)pyrene (0.28 µg/g) observed for the soil sample collected at the downwind soil sampling site on October 18, 2017 satisfied the Table 1 criteria of the MOECC Standards.
- It is noted that the August 2017 concentration was not verified in October 2017 and therefore, the benzo(a)pyrene concentration noted in August 2017 is not persistent within the soil of the downwind sampling site. Consequently, the August 2017 benzo(a)pyrene concentration noted in the soil that was sampled from the downwind sampling site is interpreted to be anomalous as the soil re-sampling event for the downwind soil sampling site that took place in October 2017, did not verify the August 2017 concentration.
- The inconsistency of parameter concentrations in soil is indicative of native soil's inherent natural heterogeneity, which is common in soils and is similarly observed for other tested constituents in soils. The DYEC source tests confirm that the DYEC is not a significant contributor of benzo(a)pyrene. Given

this evidence, the benzo(a)pyrene concentrations noted in the soil for the August sampling event should not be attributed to DYEC operations.

- The benzo(a)pyrene concentration noted within the soil sample collected from the downwind sampling site in August 2017 does not pose an immediate risk to health or the environment and it was not verified to be persistent within the soil as evidenced by the acceptable soil quality noted for the re-sampling event conducted in October 2017. Ongoing soil monitoring in the future will continue to assess the long-term concentration trend for benzo(a)pyrene in the soil at the downwind soil sampling site.
- In accordance with Condition 7.(10) (b) of the ECA, soil testing shall be undertaken once every three (3) years. The soil sampling program should take place within the same season each year (i.e. August). The next soil testing event is scheduled to be completed in August of 2020.

TABLE OF CONTENTS

1		1
1.1	Background	1
1.2	Objectives and Scope	1
1.3	Assumptions and Limitations	2
2	METHODOLOGY	2
2.1	Soil Sampling Site Preparation	2
2.2	Soil Sampling	3
	2.2.1 Soil Sample Holding Times	
	2.2.2 Decontamination Procedure	
2.3	Laboratory Analytical Parameters	
3	RESULTS AND EVALUATION	4
3.1	Quality Assurance and Quality Control	
3.2	Field Documentation	6
3.3	Soil Quality	6
	3.3.1 Metals	
	3.3.2 Polycyclic Aromatic Hydrocarbons	
	3.3.3 Dioxins and Furans3.3.4 Summary and Discussion	
	-	
4	FUTURE MONITORING	8
5	CONCLUSIONS	9
6	STUDY LIMITATIONS	10
7	CLOSURE	10

LIST OF TABLES

- **Table 1:** Relative Percent Difference Analysis
- Table 2:
 Soil Analytical Results Metals
- **Table 3:** Soil Analytical Results Polycyclic Aromatic Hydrocarbons
- Table 4:
 Soil Analytical Results Dioxins and Furans

LIST OF FIGURES

- Figure 1:Site Location Plan
- Figure 2: Upwind Sample Location Plan
- Figure 3: Downwind Sample Location Plan
- Figure 4: DYEC Sample Location Plan

LIST OF APPENDICES

Appendix A: Photographic LogAppendix B: Laboratory Certificates of Analysis

1 INTRODUCTION

1.1 Background

Durham York Energy Centre (DYEC) is an energy-from-waste facility located in the Municipality of Clarington, Regional Municipality of Durham, Ontario. DYEC is situated on the southwest corner of Osborne Road and Energy Drive. DYEC is bounded by commercial and industrial property uses to the north and east, the Canadian National Railway and the Courtice Water Pollution Control Plant (CWPCP) to the south and undeveloped lands to the west. A Location Map is presented in **Figure 1**.

DYEC is operated under a multi-media Environmental Compliance Approval 7306-8FDKNX, dated June 28, 2011 (ECA). A baseline soil quality study was undertaken as part of the Environmental Assessment (EA) to characterize background soil conditions in the vicinity of DYEC prior to its operation. The soil quality results of the baseline study satisfied the Table 1 criteria, where applicable, of the *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011).* Per Condition 7(10) and 13 (4) of the ECA, the Soils Testing Plan (*Durham York Energy Centre Soils Testing Plan, The Regional Municipality of Durham*, dated March 7, 2014) was prepared. The Soils Testing Plan was based, in part, on the findings of the baseline soil study.

Subsequent soil testing events were undertaken in 2013 (prior to DYEC operations), 2015 (representing year 1 of DYEC operations), and in 2016 (representing year 2 of DYEC operations). Soil samples were collected from the designated upwind and downwind sampling locations, as well as on-site during the 2015 and 2016 sampling events.

This report was prepared to satisfy the requirements of the Soils Testing Plan as well as ECA No. 7306-8FDKNX, dated June 28, 2011 (plus amendments).

1.2 Objectives and Scope

The objectives of the 2017 Soil Testing Program for DYEC are outlined below.

- To evaluate soil quality upwind, downwind, and on-site for potential effects as a result of DYEC operations.
- To compare the current year's soil quality data to the baseline data, historical data, the Table 1 criteria of the Ministry of Environment and Climate Change (MOECC) *"Soil, Groundwater, and Sediment Standards For Use Under Part XV.1 of the Environmental Protection Act"*, (MOECC Standards), as well as soil quality data between soil sampling sites.
- To determine whether or not there is the need to implement a contingency plan as outlined in the Soils Testing Plan, in consideration of soil testing findings.
- To provide a report presenting the findings of the Soil Testing Program to Durham Region and the MOECC.

The primary aspects of the Soil Testing Program are data collection, analysis, and interpretation. This 2017 Soil Testing Report documents the data collected as part of the 2017 Soil Testing Program and the data were interpreted in consideration of the requirements set forth in the Soils Testing Plan, as well as historical data.

To evaluate the soil quality at and nearby the Site, analytical results were assessed against the Table 1 criteria of the MOECC Standards. The 2017 Soil Testing Program involved a data collection component and a comprehensive analysis and interpretation component. Historical data were provided to RWDI by Durham Region. The 2017 data was collected, assembled, and analyzed by RWDI.

1.3 Assumptions and Limitations

Relevant historical data were provided to RWDI by Durham Region. The historical data provided by Durham Region for the purposes of preparing this 2017 Soil Testing Report has been relied upon by RWDI for our assessment. RWDI has assumed that the information provided was factual and accurate as presented.

2 METHODOLOGY

Soil samples were collected from each designated sampling site (upwind, downwind, and on-site). Each soil sampling site was established adjacent to an existing ambient air monitoring station. The upwind soil sampling site was established at the western portion of the Courtice Water Pollution Control Plant (CWPCP), about 600 metres southwest of the Site. The location of the upwind soil sampling site is presented in **Figure 2**. The downwind soil sampling site was established on a parcel of private property leased by Durham Region, which is located near the southeast corner of the Baseline Road and Rundle Road intersection, about 2 kilometres northeast of DYEC. The location of the downwind soil sampling site is presented in **Figure 3**. The on-site soil sampling site was established at the eastern extent DYEC-owned lands, adjacent to Osborne Road and south of Energy Drive. The location of the DYEC soil sampling site is presented in **Figure 4**.

2.1 Soil Sampling Site Preparation

The soil sampling sites established upwind and at DYEC were constructed by RWDI personnel based on previously established metal fence post benchmarks at each site. The metal posts were installed at the southeast and northwest corners of the respective soil sampling sites for the upwind and DYEC locations. A fiberglass measuring tape was used to lay out the remaining three (3) corners of the sampling site to establish sub-plots within a sampling grid. Metal posts were installed at each corner, creating a ten (10) metre by ten (10) metre square. Nine (9) equally distributed sub-plots were then established within each ten (10) metre square using the measuring tape and wooden stakes. Each sub-plot consisted of a 3.3 metre by 3.3 metre square. The sampling grids were then completed by delineating each sub-plot with rope secured to the metal posts and wooden stakes.

The downwind soil sampling site remained unchanged from the previous sampling event and was considered relatively undisturbed. As such, the soil sample was collected within the established grid at the downwind soil sampling site. It should be noted the tall vegetation prevented the delineation of the sub-plots using rope. RWDI personnel used caution such that sample was accurately collected within the established grid. Photographs of each sample grid are presented in **Appendix A**.

The position of each corner of the sampling sites was recorded using a handheld GPS unit. The coordinates were recorded in UTM NAD 83 format for reference, if required. Following sample collection, the temporarily constructed grids located at the upwind and DYEC soil sampling sites were removed, with the exception of the aforementioned metal fence post benchmarks, which were maintained for future reference at these locations. The downwind soil sampling site was left in place following sample collection, in consideration of past practice.

2.2 Soil Sampling

One (1) composite soil sample was collected from each soil sampling site on August 23, 2017. Compositing samples consisted of combining soil aliquots collected from nine (9) sub-plots for each soil sampling grid, which are established per Section 2.1. An equal volume of soil (approximately 250 mL) was collected from each sub-plot, for a total of approximately 2,250 mL of soil that was collected from each soil sampling site. The soil was collected from surface to two (2) centimetres below ground surface (cm BGS) using a stainless-steel trowel. Vegetation and rootlets were excluded from the sample, where practical. The soil aliquots from each sub-plot were placed into a stainless-steel bowl and homogenized prior to filling the laboratory provided sample jars.

Per Section 3.4 of the Soils Testing Plan, one (1) replicate soil sample was collected from each of the three (3) soil sampling sites. The replicate samples were retained by Durham Region personnel, in consideration of past practices.

2.2.1 Soil Sample Holding Times

Per Section 3.5 of the Soils Testing Plan (Sample Handling), container requirements for parameter analysis, storage, and preservation requirements for soil samples were carried out in accordance with the document *Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act* by MOECC Laboratory Services Branch dated July 1, 2011. As noted in previous Soil Testing Reports, the soil sample holding times specified in the aforementioned document vary compared to the sample holding times recommended by AGAT Laboratories Ltd. (AGAT) for select parameters, as outlined below.

Parameter Grouping	AGAT Laboratories Holding Time	MOECC Analytical Protocol*				
Metals	180 days	180 days				
Chromium VI	28 days	30 days				
Mercury, Methyl Mercury	28 days	28 days				
PAH's	14 days	60 days				
Dioxins and Furans	180 days	Indefinite				

Note: *Denotes protocol as per Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act by MOECC Laboratory Services Branch dated July 1, 2011.

Analytical results of the above parameters may be affected, should analysis be completed beyond the prescribed sample holding times. Soil samples submitted for analytical testing did not surpass their respective holding times for this soil sampling event.

2.2.2 Decontamination Procedure

The stainless-steel trowels and bowls used for soil sample collection were decontaminated between each soil sampling site. The decontamination procedure was undertaken in accordance with Section 3.5 of the Soils Testing Plan, such that the equipment was washed with an environmental grade cleanser and rinsed with deionized water, followed by acetone and hexane rinses. The sampling equipment was allowed to air-dry prior to being placed in sealed containers for storage in between soil sampling sites.

2.3 Laboratory Analytical Parameters

The soil samples collected during the 2017 Soil Testing Program were submitted to AGAT Laboratories (AGAT) under chain of custody procedures for analysis of the parameters listed below. AGAT is a Canadian Association for Laboratory Accreditation (CALA) certified laboratory for analysis of the parameters listed below with the exception of methyl mercury. Analysis of methyl mercury was subcontracted by AGAT to Flett Research Ltd. of Winnipeg, Manitoba, a CALA certified laboratory for methyl mercury analysis.

Parameter Grouping	Parameter
Metals	Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Chromium, Chromium VI, Cobalt, Copper, Lead, Mercury, Methyl Mercury, Molybdenum, Nickel, Phosphorus, Selenium, Silver, Thallium, Tin, Vanadium, Zinc
Polycyclic Aromatic Hydrocarbons (PAH's)	Anthracene, Benzo(a)fluorene, Beno(a)pyrene TEQ, Benzo(b)fluorene, Fluorene
Dioxins and Furans (PCDD/PCDF)	Total PCDD/PCDF (TEQ)

3 RESULTS AND EVALUATION

3.1 Quality Assurance and Quality Control

Quality assurance and quality control (QA/QC) measures for DYEC's Soil Testing Program in 2017 included fieldprepared duplicate samples, laboratory duplicates, laboratory spiked samples, as well as percent recovery of analysis and data review.

The laboratory analyzed several control samples to verify that the analytical equipment was functioning properly and that it would report results accurately at the time of analysis for the samples collected. The control samples had an expected target value, which was compared against pre-determined data quality objectives. For the laboratory control samples, the results were within acceptable laboratory data quality criteria.

For the field-prepared duplicate sample, the analytical results for the required parameters of analysis were evaluated by RWDI for the relative percent difference (RPD) of parameter concentrations using the USEPA National Functional Guidelines (US EPA 540-R-10-011) as a general QA/QC RPD screening mechanism. The RPD screening mechanism is such that for concentrations greater than five (5) times the reported detection limit (RDL), a concentration difference of less than or equal to 20% is deemed acceptable. For concentrations less than or equal to five (5) times the RDL, a concentration difference of equal to or less than the RDL is deemed acceptable. Where a calculated RPD is outside of the tolerance of the general QA/QC RPD screening mechanism, the results for the required parameters of analysis are evaluated against the applicable performance standards for sample duplicates noted in Tables 5.1 to 5.15 of the MOECC's *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, dated March 8, 2004, and amended July 1, 2011.

For the results found to be outside of the tolerance of each QA/QC evaluation, a laboratory data quality review (DQR) of the results is requested such that the concentrations are accurate as presented and are within acceptable laboratory data quality criteria. Soil duplicate samples were analyzed for the complete analytical parameter list.

One (1) field prepared soil duplicate sample was collected during the 2017 Soil Testing Program. The fieldprepared soil duplicate sample was collected from the upwind soil sampling site (designated 'Soil Dup'). The RPD results for the field prepared soil duplicate sample are included in **Table 1**. Per **Table 1**, the analyzed metals and PAH parameters satisfied QA/QC tolerances. Select dioxin and furan parameters showed RPD values that were above the control limits. Soil dioxin and furan concentrations were detected very close, within five times, of the respective RDL. As the measured result approaches the RDL, the uncertainty associated with the value increases. It is noted the laboratory internal QA analysis satisfied the relevant acceptance limits. Given the heterogeneity associated with soil as a sample media, the RPD analysis for dioxins and furans should be interpreted with caution.

Although QA/QC exceptions were identified, the relevant sample results were deemed to be representative of actual conditions at the time of sampling.

3.2 Field Documentation

Per Section 3.6 of the Soils Testing Plan, detailed field notes were collected at the time of sampling by RWDI personnel. The following table summarizes the data collected in the field.

Data Type	Information Collected
Site Name & Photograph	Durham York Energy Center. Site photographs are included in Appendix A .
GPS Coordinates for Sample Plot Locations (UTM NAD 83)	Upwind NE Corner: 680044, 4860028 Downwind NE Corner: 681968,4861867 DYEC NE Corner: 680655, 4860513
Field Personnel's Name	Dusan Milovic, Martin Town
Date, Time and Location of Sample Collection	Upwind: August 23, 2017, 9:30 Downwind: August 23, 2017, 12:45 DYEC: August 23, 2017, 11:00
Sample Number/ID	Upwind Grid: 'Upwind' Downwind Grid: 'Downwind' DYEC Grid: 'DYEC'
Whether QA/QC Samples Were Collected	One (1) field prepared blind duplicate sample. One (1) replicate sample collected for retention by Durham Region at each sample grid location.
Type of Containers Used for Collection	Two (2) 250 mL and one (1) 120 mL glass amber jars for each sampling grid were provided by AGAT.
Whether samples were Preserved	Samples were not preserved, as specified by AGAT.
Sampling Method and Composite Collection Pattern/Map of Test Plot Area	As specified in Section 2 and Figures 2 through 4 of this Report.
Unusual Site Conditions	The Downwind sample grid was covered with waist high vegetation. The DYEC sample grid was located with approximately 0.3 m of Osborne Road.
Weather Conditions	Clear to partly cloudy, approximately 22°C.

Field notes collected at the time of sample collection are maintained on file by RWDI for future reference, if required.

3.3 Soil Quality

The soil analytical results were received in full from the laboratory on October 26, 2017. The laboratory certificates of analysis are provided in **Appendix B**.

3.3.1 Metals

The laboratory analytical results for the metals parameters analyzed at the upwind, downwind, and DYEC soil sampling sites in August 2017, historical data dating back to 2013, as well as a comparison to Table 1 criteria of the MOECC Standards is provided in **Table 2**. Per **Table 2**, the metals parameter concentrations observed in August 2017 satisfied the Table 1 criteria of the MOECC Standards. The current concentrations were generally consistent with the historical metals concentrations. Concentrations for select metal constituents were observed to be slightly increasing as noted for each of the upwind, downwind, and DYEC datasets, similar to historical observations.

3.3.2 Polycyclic Aromatic Hydrocarbons

The laboratory analytical results for the PAH parameters analyzed at the upwind, downwind, and DYEC soil sampling sites in August 2017, historical data dating back to 2013, as well as a comparison to Table 1 criteria of the MOECC Standards is provided in **Table 3**. Per **Table 3**, the PAH parameter concentrations observed in August 2017 satisfied the Table 1 criteria of the MOECC Standards with the exception of benzo(a)pyrene at the downwind soil sampling site.

The observed concentration of benzo(a)pyrene (0.61 micrograms per gram (μ g/g)) exceeded the Table 1 criteria of the MOECC Standards of 0.3 μ g/g. Benzo(a)pyrene has been detected historically (2013 and 2015) at this sampling location at concentrations that satisfied the Table 1 criteria of the MOECC Standards. Of note, the August 2013 soil sampling event was completed prior to operation of the Site.

3.3.2.1 Downwind Sampling Site PAH Re-Sampling

Per Section 7 of the Soils Testing Plan, if a parameter concentration exceeds the Table 1 criteria of the MOECC Standards, a re-sampling event is to take place with analytical testing focusing on the parameters that exceeded the relevant criteria during the original sampling event. As such, the downwind soil sampling site was re-sampled on October 18, 2017 and was submitted to AGAT for analysis of benzo(a)pyrene. The soil sampling methodology for the October 2017 re-sampling event followed that of the original soil sampling event conducted in August as outlined in **Section 2.2**. The benzo(a)pyrene concentration of 0.28 µg/g observed for the sample collected on October 18, 2017 satisfied the Table 1 criteria of the MOECC Standards of 0.3 µg/g.

3.3.3 Dioxins and Furans

The laboratory analytical results for the dioxins & furans parameters analyzed at the upwind, downwind, and DYEC soil sampling sites in August 2017, historical data dating back to 2013, as well as a comparison to Table 1 criteria of the MOECC Standards is provided in **Table 4**. Per **Table 4**, the dioxins & furans parameter concentrations observed in August 2017 satisfied the Table 1 criteria of the MOECC Standards. The current concentrations noted in the soil for this sampling event were generally consistent with the historical soil dioxins and furans concentrations.

3.3.4 Summary and Discussion

Overall, parameter concentrations observed at the upwind, downwind, and DYEC soil sampling sites were generally comparable to historical concentrations. Benzo(a)pyrene within the soil at the downwind soil sampling site has been detected historically and typically has satisfied the Table 1 criteria of the MOECC Standards.

The PAH parameter concentrations observed in August 2017 satisfied the Table 1 criteria of the MOECC Standards with the exception of benzo(a)pyrene at the downwind soil sampling site. At the downwind sampling site, the observed concentration of benzo(a)pyrene (0.61 micrograms per gram (μ g/g)) exceeded the Table 1 criteria of the MOECC Standards of 0.3 μ g/g.

The downwind soil sampling site was re-sampled on October 18, 2017 and was submitted to AGAT for analysis of benzo(a)pyrene. The soil sampling methodology for the October 2017 re-sampling event followed that of the original soil sampling event conducted in August as outlined in **Section 2.2**. The soil benzo(a)pyrene concentration of 0.28 μ g/g observed for the re-sampling event soil collected on October 18, 2017 satisfied the Table 1 criteria of the MOECC Standards of 0.3 μ g/g.

It is noted that the August 2017 concentration was not verified in October 2017 and therefore, the benzo(a)pyrene concentration noted in August 2017 is not persistent within the soil of the downwind sampling site. Consequently, the August 2017 benzo(a)pyrene concentration noted in the soil that was sampled from the downwind sampling site is interpreted to be anomalous as the soil re-sampling event for the downwind soil sampling site that took place in October 2017, did not verify the August 2017 concentration.

The inconsistency of parameter concentrations in soil is indicative of native soil's inherent natural heterogeneity, which is common in soils and is similarly observed for other tested constituents in soils. The DYEC source tests confirm that the DYEC is not a significant contributor of benzo(a)pyrene. Given this evidence, the benzo(a)pyrene concentrations noted in the soil for the August sampling event should not be attributed to DYEC operations.

The August 2017, soil benzo(a)pyrene concentration, does not pose an immediate risk to human health or the environment, as the concentration was deemed to be anomalous. As a further degree of conservatism to protect human health and the environment, the downwind soil sampling site is not accessed and/or utilized for any purpose and is left in a naturalized (overgrown) vegetative condition.

4 FUTURE MONITORING

Per Section 3.2 of the Soils Testing Plan, the 2017 Soil Testing Program was the third event in a three (3) consecutive year period since DYEC operations began. As such, and in accordance with Condition 7.(10) (b) of the ECA, soil testing shall be undertaken once every three (3) years. It is suggested that the soil sampling program take place within the same season each year (i.e. August). As such, the next soil testing event is scheduled to be completed in August of 2020.

5 CONCLUSIONS

The following conclusions are based on the findings presented in this report.

- The soil sampling grids established at the upwind and DYEC sampling locations were constructed by RWDI personnel based on previously established metal T-fence post benchmarks installed at specific corners of the grid outline at each of the soil sampling sites. The soil sampling grid established at the downwind location was left in place from the previous sample collection efforts.
- Overall, parameter concentrations observed at the upwind, downwind, and DYEC soil sampling sites were generally comparable to historical concentrations.
- The observed soil concentration of benzo(a)pyrene (0.61 µg/g) noted at the downwind soil sampling site for the August 2017 sampling event exceeded the Table 1 criteria of the MOECC Standards (0.3 µg/g).
- Per Section 7 of the Soils Testing Plan, the soil sampling site shall be re-sampled and analyzed for parameter(s) noted to have exceeded during the original sampling event. As such, the downwind soil sampling site was re-sampled on October 18, 2017 for analysis of benzo(a)pyrene. The concentration of benzo(a)pyrene (0.28 µg/g) observed for the soil sample collected at the downwind soil sampling site on October 18, 2017 satisfied the Table 1 criteria of the MOECC Standards.
- It is noted that the August 2017 concentration was not verified in October 2017 and therefore, the benzo(a)pyrene concentration noted in August 2017 is not persistent within the soil of the downwind sampling site. Consequently, the August 2017 benzo(a)pyrene concentration noted in the soil that was sampled from the downwind sampling site is interpreted to be anomalous as the soil re-sampling event for the downwind soil sampling site that took place in October 2017, did not verify the August 2017 concentration.
- The inconsistency of parameter concentrations in soil is indicative of native soil's inherent natural heterogeneity, which is common in soils and is similarly observed for other tested constituents in soils. The DYEC source tests confirm that the DYEC is not a significant contributor of benzo(a)pyrene. Given this evidence, the benzo(a)pyrene concentrations noted in the soil for the August sampling event should not be attributed to DYEC operations.
- The benzo(a)pyrene concentration noted within the soil sample collected from the downwind sampling site in August 2017 does not pose an immediate risk to health or the environment and it was not verified to be persistent within the soil as evidenced by the acceptable soil quality noted for the re-sampling event conducted in October 2017. Ongoing soil monitoring in the future will continue to assess the long-term concentration trend for benzo(a)pyrene in the soil at the downwind soil sampling site

6 STUDY LIMITATIONS

This report was prepared using scientific principles and professional judgment in assessing available facts and presenting subjective interpretations. The professional judgments presented within this document are based on available facts within the limits of the existing information, budgeted scope of work, and schedule. It is RWDI's intent that the professional judgment and interpretive conclusions be utilized as guidance and not be necessarily construed as a firm course of action, unless explicitly stated otherwise. We make no warranties, expressed or implied, including without limitation, or warranties as to merchantability or fitness of the property for a particular purpose. The information presented in this report is not to be construed as legal advice.

RWDI relied on information obtained from Site representatives, independent sources, and other historical documentation as referenced in this report. The accuracy and completeness of third party sources was not verified. It is noted that regulatory guidelines, standards, and related documents as they may be referenced in this report are subject to interpretation and may change over time.

This report was prepared for the exclusive use of the Regional Municipality of Durham and the Ministry of the Environment and Climate Change. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. RWDI accepts no responsibility for damages, if any, suffered by any third party as result of decisions made or actions based on this report.

7 CLOSURE

We trust that this 2017 Soil Testing Report for the Durham York Energy Centre is satisfactory. Please do not hesitate to contact us with any questions you may have.

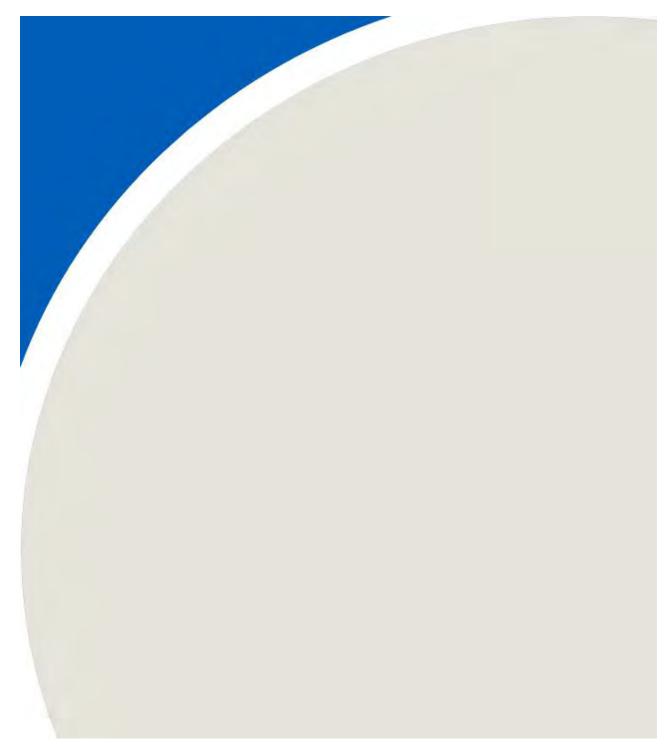
Yours very truly,

RWDI

Philippe E. Janisse, B.Sc., P.Geo. Project Manager | Senior Geoscience Specialist

Attach.

Ma


Timothy Boc, B.E.S. Senior Scientist

RWDI aims to accommodate. If you require this document in a different format in order to aid accessibility, please contact the sender of this document, email solutions@rwdi.com or call +1.519.823.1311

TABLES

Table 1: Relative Percent Difference Analysis - Soil

Durham York Energy Center The Regional Municipality of Durham Project No. 1604066.8001

				REPORTED			CONC	NTRATION <5	X RDL	CONCENTRATIO		N >5X RDL
SAMPLING EVENT	SAMPLE IDENTIFIER	PARAMETER	UNITS	DETECTION LIMIT	SAMPLE CONCENTRATION	REPLICATE CONCENTRATION	DIFFERENCE IN CONCENTRATION	CONTROL LIMIT (± RDL)	COMMENT	RPD %	CONTROL LIMIT	COMMEN
Aug-17	UPWIND	Metals						()				
	(SOIL DUP)	Antimony	µg/g	0.8	1	1	0.00		ОК			
		Arsenic	µg/g	1	3	3	0.00	1	ОК			
		Barium	µg/g	2	94	92				2	30	ОК
		Beryllium	µg/g	0.5	1	1	0.00		ок			
		Boron	µg/g	5	6	7	1.00		ок			
		Cadmium	µg/g	0.5	1	1	0.00	0.5	ОК			
		Chromium, Total	µg/g	2	21	21				0	30	ОК
		Chromium, Hexavalent	µg/g	0.2	0.2	0.2	0.00	0.2	ОК			
		Cobalt	µg/g	0.5	7.9	7.6				4		ОК
		Copper	µg/g	1	16	16				0		ОК
		Lead	µg/g	1	11	12				9	30	ОК
		Mercury	µg/g	0.10	0.1	0.1	0.00	0.10	ОК			
		Molybdenum	µg/g	0.5	0.5	0.5	0.00	0.5	ок			
		Nickel	µg/g	1	17	16				6	30	ОК
		Phosphorus	µg/g	5	691	726				5	30	ОК
		Selenium	µg/g	0.8	0.8	0.8	0.00	0.8	ок			
		Silver	µg/g	0.4	0.4	0.4	0.00		ок			
		Thallium	µg/g	0.4	0.4	0.4	0.00	0.4	ок			
		Tin	µg/g	1	1	1	0.00	1	ОК			
		Vanadium	µg/g	1	32	31				3	30	ОК
		Zinc	µg/g	5	69	70				1	30	ок
		Polycyclic Aromatic Hydrocarbons (PAHs)									
		Fluorene	µg/g	0.05	0.05	0.05	0.00		ок			
		Anthracene	µg/g	0.05	0.05	0.05	0.00	0.05	ок			
		Benzo(a)pyrene	µg/g	0.05	0.05	0.05	0.00	0.05	ок			
		Benzo(a)fluorene	µg/g	0.05	0.05	0.05	0.00	0.05	ок			
		Benzo(b)fluorene	µg/g	0.05	0.05	0.05	0.00	0.05	ок			
		Dioxins & Furans										1
		2,3,7,8-Tetra CDD	ng/kg	0.1	0.1	0.2	0.10	0.1	ОК			
		1,2,3,7,8-Penta CDD	ng/kg	0.2	0.2	0.6	0.40	0.2	EXCEED			
		1,2,3,4,7,8-Hexa CDD	ng/kg	0.2	0.3	1.0	0.70	0.2	EXCEED			
		1,2,3,6,7,8-Hexa CDD	ng/kg	0.2	0.3	0.8	0.50	0.2	EXCEED			
		1,2,3,7,8,9-Hexa CDD	ng/kg	0.2	0.2	1.2	1.00	0.2	EXCEED			
		1,2,3,4,6,7,8-Hepta CDD	ng/kg	0.3	6.2	8.8				35	40	ок
		Octa CDD	ng/kg	0.6	43.2	64.4				39	40	ОК
		2,3,7,8-Tetra CDF	ng/kg	0.1	0.1	0.3	0.20	0.1	EXCEED			
		1,2,3,7,8-Penta CDF	ng/kg	0.2	0.2	1.0	0.80	0.2	EXCEED			
		2,3,4,7,8-Penta CDF	ng/kg	0.2	0.2	0.6	0.40	0.2	EXCEED			
		1,2,3,4,7,8-Hexa CDF	ng/kg	0.2	0.4	1.0	0.60	0.2	EXCEED			
		1,2,3,6,7,8-Hexa CDF	ng/kg	0.2	0.2	0.9	0.70	0.2	EXCEED			
		2,3,4,6,7,8-Hexa CDF	ng/kg	0.2	0.2	1.0	0.80	0.2	EXCEED			
		1,2,3,7,8,9-Hexa CDF	ng/kg	0.2	0.2	1.0	0.80	0.2	EXCEED			
		1,2,3,4,6,7,8-Hepta CDF	ng/kg	0.3	1.7	2.6				42	40	EXCEED
		1,2,3,4,7,8,9-Hepta CDF	ng/kg	0.4	0.4	0.7	0.30	0.4	ок			
		Octa CDF	ng/kg	0.5	4.6	4.5				2	40	ок
		Total Tetrachlorodibenzodioxins	ng/kg	0.1	0.5	0.7	0.20	0.1	EXCEED			
		Total Pentachlorodibenzodioxins	ng/kg	0.2	1.0	1.3	0.30	0.2	EXCEED			
		Total Hexachlorodibenzodioxins	ng/kg	0.2	2.3	4.4				63		EXCEED
		Total Heptachlorodibenzodioxins	ng/kg	0.3	14.5	18.6				25		ок
		Total PCDDs	ng/kg	0.6	61.5	89.3				37	40	ОК
		Total Tetrachlorodibenzofurans	ng/kg	0.1	2.6	2.9				11	40	ок
		Total Pentachlorodibenzofurans	ng/kg	0.2	1.1	3.2				98	40	EXCEED
		Total Hexachlorodibenzofurans	ng/kg	0.2	2.5	6.0				82	40	EXCEED
		Total Heptachlorodibenzofurans	ng/kg	0.4	4.1	5.8				34		ок
	1	Total PCDFs	ng/kg	0.5	14.9	22.4	1		1	40		ОК

Notes: (1) "RPD" indicates Relative Percent Difference. (2) Concentrations reported below the RDL are presented as the RDL.

Table 2: Soil Analytical Results - Metals

Durham York Energy Center The Regional Municipality of Durham Project No. 1604066.8001

Demonstration	Soil Standards		UPW	/IND			DYEC		DOWNWIND			
Parameters	Soli Standards	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	25-Aug-15	17-Aug-16	23-Aug-17	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17
Metals												
Antimony	1.3	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	18	2	2	3	3	2	3	3	3	3	3	3
Barium	220	87	76	100	94	54	81	97	68	59	74	67
Beryllium	2.5	0.5	0.6	0.6	0.6	0.5	0.6	0.6	<0.5	0.5	0.6	<0.5
Boron	36	6	7	9	6	5	7	5	5	7	8	5
Cadmium	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, Total	70	18	20	23	21	16	20	22	14	15	18	16
Chromium, Hexavalent	0.66	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	21	6.8	7.1	7.7	7.9	4.5	5.6	6.6	4.8	4.9	5.6	4.9
Copper	92	15	12	15	16	9	14	17	11	9	11	10
Lead	120	10	9	10	11	10	13	15	13	12	14	15
Mercury	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Methyl Mercury (ng/g)	-	<1.3	<0.4	<0.4	<0.4	0.75	<0.4	<0.4	<1.3	<0.4	<0.4	<0.4
Molybdenum	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	82	16	13	15	17	9	12	14	11	9	10	9
Phosphorus	-	729	815	891	691	911	973	813	609	668	705	592
Selenium	1.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Thallium	1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Tin	-	<1	<1	<1	<1	1	2	1	<1	<1	<1	<1
Vanadium	86	27	29	33	32	23	27	31	24	26	28	25
Zinc	290	63	58	67	69	54	70	78	51	49	60	53

Notes: 1. Soil Standard as per Table 1 of the Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011.)

2. '-' denotes Soil Standard criteria not established.

3. **BOLD** and shaded indicate an exceedance of the Soil Standards

4. Units are in μg/g unless otherwise noted.

Table 3: Soil Analytical Results - Polycyclic Aromatic Hydrocarbons

Durham York Energy Center The Regional Municipality of Durham

Project No. 1604066.8001

	Soil Standards	UPWIND				DYEC			DOWNWIND				
Parameters		22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	25-Aug-15	17-Aug-16	23-Aug-17	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	10/18/2017 (Re-sample)
Polycyclic Aromatic Hydrocarbons (
Fluorene	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Anthracene	0.16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.12	-
Benzo(a)pyrene	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	0.05	<0.05	0.61	0.28
Benzo(a)fluorene	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Benzo(b)fluorene	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Notes: 1. Soil Standard as per Table 1 of the Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011.)

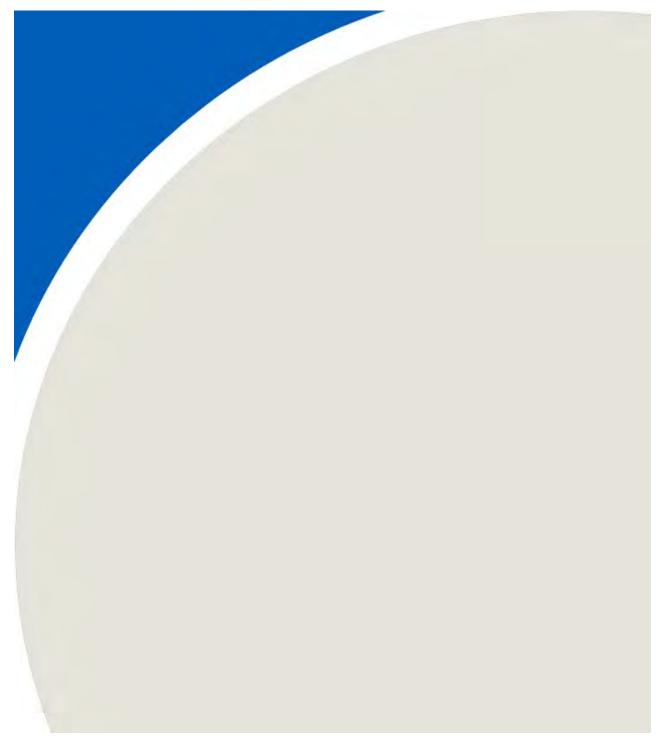
2. '-' denotes Soil Standard criteria not established.

3. BOLD and shaded indicate an exceedance of the Soil Standards

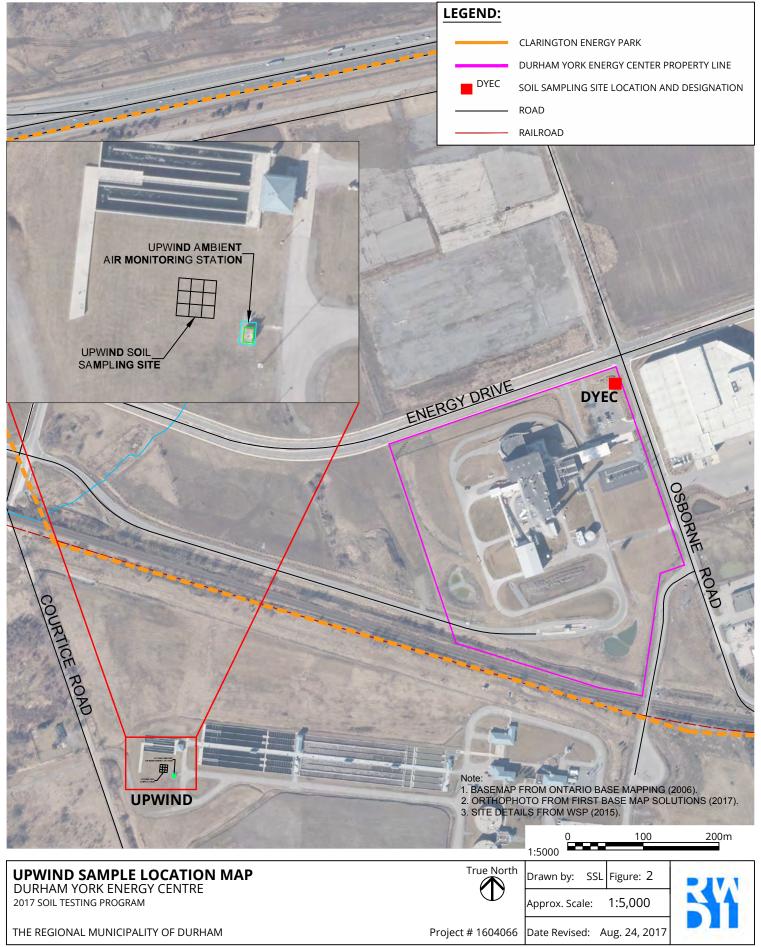
4. Units are in μ g/g unless otherwise noted.

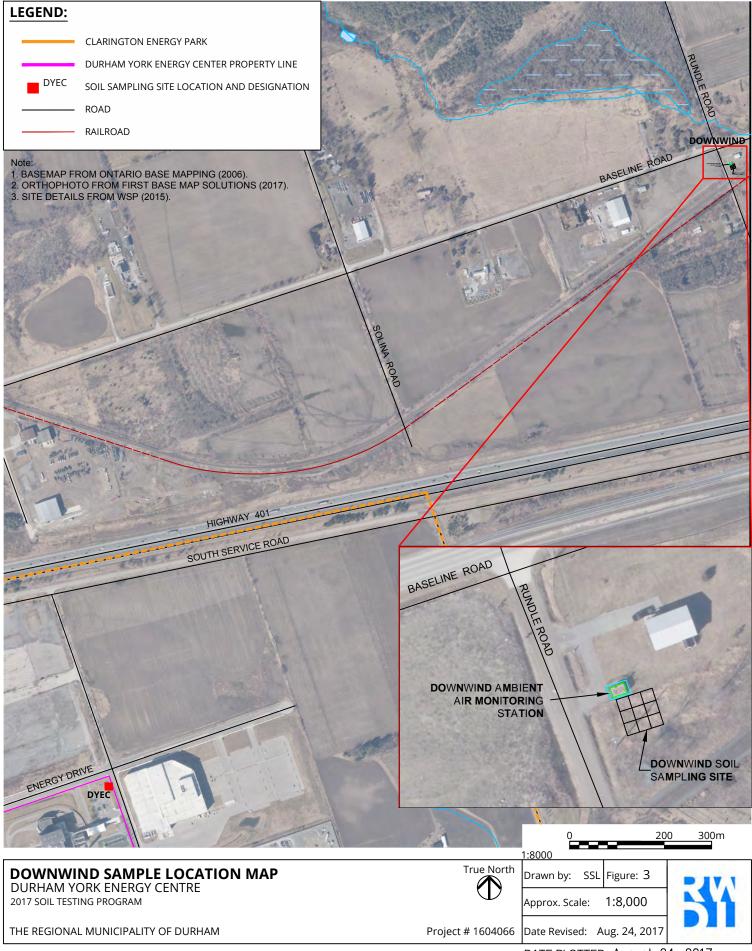
Table 4: Soil Analytical Results - Dioxins & Furans

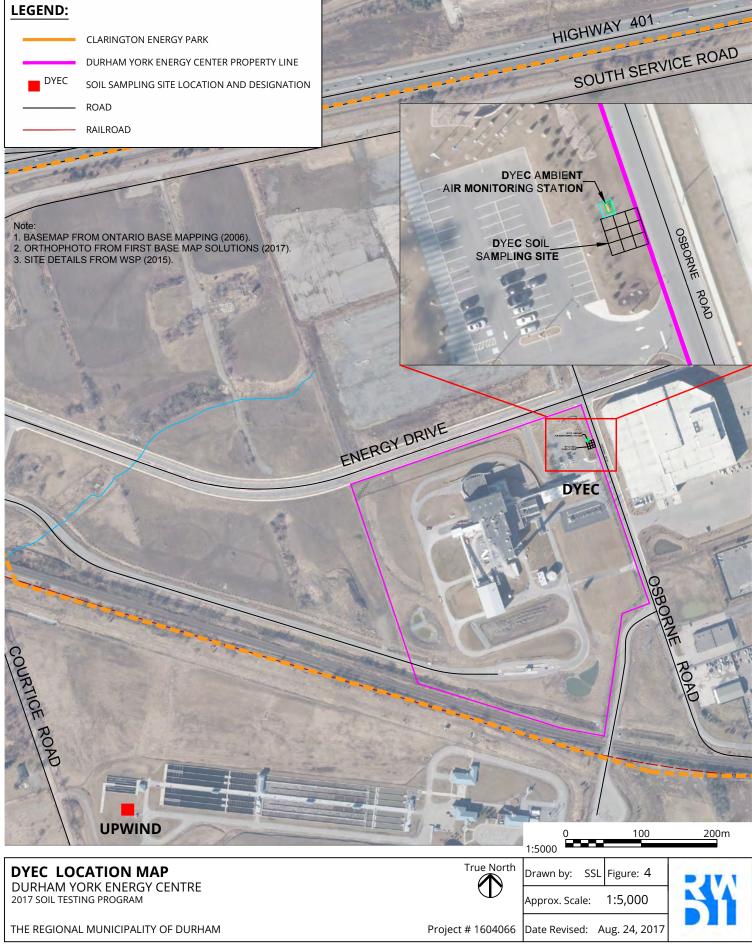
Durham York Energy Center The Regional Municipality of Durham Project No. 1604066.8001


Parameters	Units	ts Soil Standards		UPV	VIND			DYEC		DOWNWIND			
Farameters	Units	Son Stanuarus	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	25-Aug-15	17-Aug-16	23-Aug-17	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17
Dioxins & Furans													
2,3,7,8-Tetra CDD	ng/kg	-	<0.5	0.2	<0.1	<0.1	<0.2	<0.1	<0.8	<0.4	<0.1	<0.1	<0.3
1,2,3,7,8-Penta CDD	ng/kg	-	<0.6	0.5	<0.1	<0.2	0.3	<0.1	<0.6	<0.6	<0.2	<0.1	0.4
1,2,3,4,7,8-Hexa CDD	ng/kg	-	<0.6	0.6	<0.1	0.3	0.4	1.8	<1	<0.5	0.2	<0.1	<0.4
1,2,3,6,7,8-Hexa CDD	ng/kg	-	<0.6	0.5	<0.1	0.3	<0.3	2	<1	<0.5	0.6	<0.1	0.6
1,2,3,7,8,9-Hexa CDD	ng/kg	-	<0.5	0.6	<0.1	0.2	0.9	2.2	<1	0.5	0.5	<0.1	1
1,2,3,4,6,7,8-Hepta CDD	ng/kg	-	8.2	7.9	4.8	6.2	12	36.3	12	17	11	8.1	12.6
Octa CDD	ng/kg	-	57	60	31.5	43.2	95	303	82	118	86	74.7	103
2,3,7,8-Tetra CDF	ng/kg	-	<0.4	0.3	<0.1	<0.1	<0.2	<0.1	<0.3	<0.3	0.2	<0.1	<0.3
1,2,3,7,8-Penta CDF	ng/kg	-	<0.4	0.4	<0.1	<0.2	<0.2	<0.1	<1	<0.8	0.2	<0.1	<0.4
2,3,4,7,8-Penta CDF	ng/kg	-	<0.4	0.5	<0.1	0.2	0.2	<0.1	<1	<0.6	0.3	<0.1	<0.4
1,2,3,4,7,8-Hexa CDF	ng/kg	-	<0.6	0.6	1.7	0.4	0.5	<0.1	<0.9	<0.4	0.6	1.6	0.8
1,2,3,6,7,8-Hexa CDF	ng/kg	-	<0.6	0.3	<0.1	0.2	0.3	<0.1	<0.8	<0.4	0.4	<0.1	0.4
2,3,4,6,7,8-Hexa CDF	ng/kg	-	<0.6	0.4	2.3	<0.2	0.4	<0.1	<0.9	0.7	0.3	1.4	0.5
1,2,3,7,8,9-Hexa CDF	ng/kg	-	<0.8	0.4	<0.1	<0.2	<0.3	<0.1	<1	<0.5	<0.2	<0.1	<0.4
1,2,3,4,6,7,8-Hepta CDF	ng/kg	-	2.1	2.2	1.2	1.7	2.7	7.8	1.3	4.9	2.6	7.9	3.2
1,2,3,4,7,8,9-Hepta CDF	ng/kg	-	<1	<0.3	<0.1	<0.4	0.3	<0.1	<0.9	<0.6	<0.2	<0.1	0.4
Octa CDF	ng/kg	-	3	6	6.7	4.6	9	32	7.5	9	8	9	6.1
Total Tetrachlorodibenzodioxins	ng/kg	-	1.3	0.7	<0.1	0.5	0.3	<0.1	<0.8	1.4	0.4	<0.1	1.5
Total Pentachlorodibenzodioxins	ng/kg	-	<0.6	2.5	<0.1	1	2.3	8.1	<0.6	2.3	1.8	<0.1	2.6
Total Hexachlorodibenzodioxins	ng/kg	-	3.6	3.7	<0.2	2.3	3.3	22.5	<1	4.3	3.2	<0.2	4.7
Total Heptachlorodibenzodioxins	ng/kg	-	17.7	10.2	13.4	14.5	15	57.9	20	31.1	12.7	28.6	25.7
Total PCDDs	ng/kg	-	80	76.8	44.9	61.5	116	392	103	158	104	103	138
Total Tetrachlorodibenzofurans	ng/kg	-	3.1	2	<0.1	2.6	3.8	10.1	7.4	4.7	2.1	1.2	3.7
Total Pentachlorodibenzofurans	ng/kg	-	1.3	2.3	4.3	1.1	3.3	6.2	<1	3.3	2.5	<0.1	2.7
Total Hexachlorodibenzofurans	ng/kg	-	2.4	1.8	103	2.5	1.2	173	3.3	6.5	1.3	2.9	5.3
Total Heptachlorodibenzofurans	ng/kg	-	5	3.3	56.9	4.1	4.9	36.4	4.1	12.3	4.8	15.1	8.1
Total PCDFs	ng/kg	-	14	15.5	171	14.9	21.7	258	14.8	36	19.1	28.3	25.9
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ	-	0.25	0.195	0.05	0.05	0.1	0.05	0.4	0.2	0.05	0.05	0.15
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ	-	0.3	0.47	0.05	0.1	0.262	0.05	0.3	0.3	0.1	0.05	0.422
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ	-	0.03	0.0628	0.005	0.0261	0.0372	0.184	0.065	0.025	0.0203	0.005	0.02
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ	-	0.03	0.0525	0.005	0.0285	0.015	0.201	0.065	0.025	0.0605	0.005	0.0635
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ	-	0.025	0.0646	0.005	0.0217	0.0871	0.22	0.07	0.0544	0.0535	0.005	0.105
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ	-	0.0819	0.0788	0.0475	0.0616	0.12	0.363	0.121	0.17	0.109	0.0807	0.126
Octa CDD (TEF 0.0003)	TEQ	-	0.0172	0.0179	0.00944	0.0129	0.0285	0.091	0.0246	0.0355	0.0259	0.0224	0.031
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ	-	0.02	0.0265	0.005	0.005	0.01	0.005	0.015	0.015	0.0224	0.005	0.015
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ	-	0.006	0.012	0.0015	0.003	0.003	0.0015	0.0165	0.012	0.006	0.0015	0.006
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ	-	0.06	0.15	0.015	0.0638	0.06	0.015	0.15	0.09	0.09	0.015	0.06
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ	-	0.03	0.0623	0.171	0.0367	0.0499	0.005	0.045	0.02	0.0576	0.159	0.075
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ	-	0.03	0.0302	0.005	0.0203	0.03	0.005	0.04	0.02	0.0369	0.005	0.0422
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ	-	0.03	0.0372	0.233	0.01	0.0427	0.005	0.045	0.072	0.0286	0.136	0.0495
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ	-	0.04	0.0377	0.005	0.01	0.015	0.005	0.065	0.025	0.01	0.005	0.02
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ	-	0.021	0.0219	0.012	0.0173	0.027	0.0782	0.0125	0.049	0.0261	0.0785	0.0321
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ	-	0.005	0.0015	0.0005	0.002	0.00266	0.0005	0.0045	0.003	0.001	0.0005	0.00417
Octa CDF (TEF 0.0003)	TEQ	-	0.00081	0.0018	0.00202	0.00138	0.00256	0.00961	0.00225	0.00284	0.00252	0.00271	0.00184
Total PCDDs and PCDFs (TEQ)	TEQ ng/kg	7	0.977	1.32	0.622	0.47	0.9	1.29	1.44	1.12	0.7	0.626	1.22

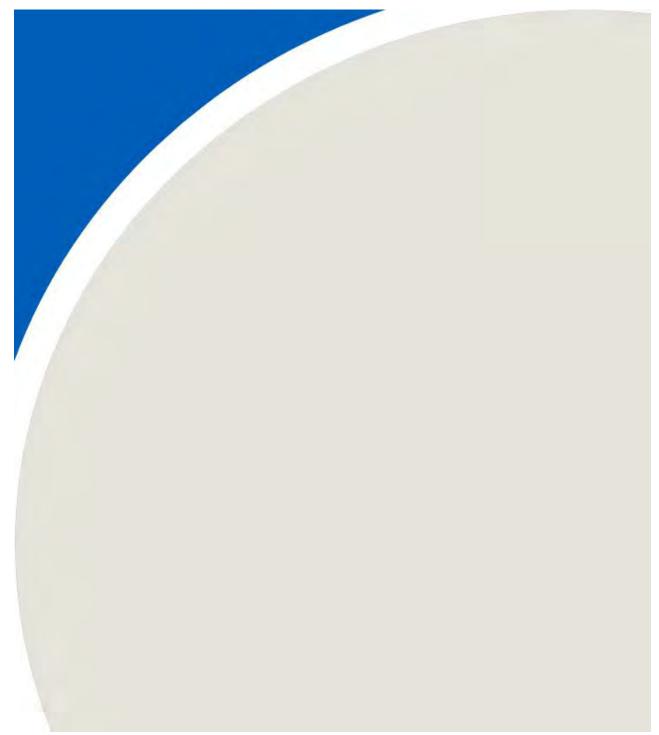
Notes: 1. Soil Standard as per Table 1 of the Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011.)


2. '-' denotes Soil Standard criteria not established.


FIGURES



DATE PLOTTED: August 24, 2017


DATE PLOTTED: August 24, 2017

DATE PLOTTED: August 24, 2017

APPENDIX A

PHOTOGRAPH 1: VIEW OF THE UPWIND SOIL SAMPLING SITE, FACING NORTHWEST.

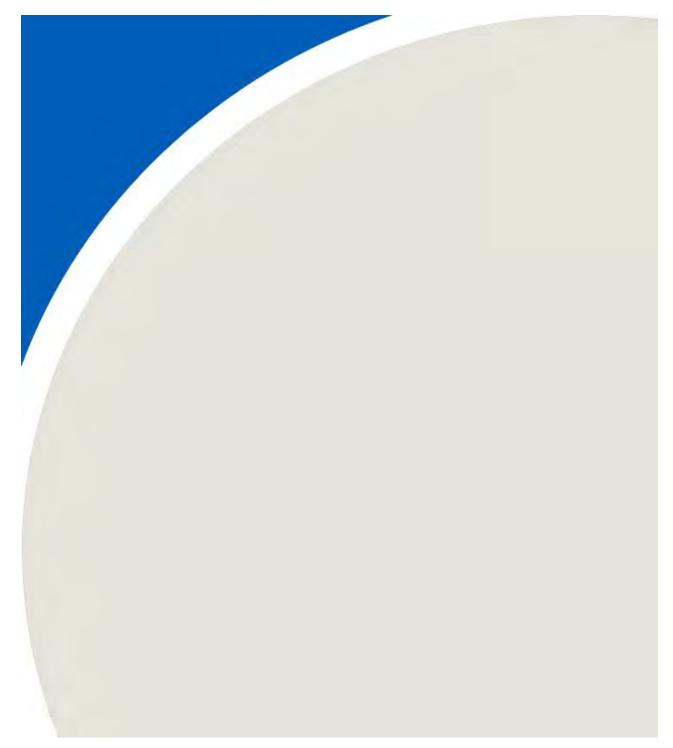
PHOTOGRAPH 2: VIEW OF THE DYEC SOIL SAMPLING SITE, FACING NORTHWEST.

Note	res: PHOTOGRAPHIC LOG FIGURE NUMBER A-1	PROJECT NUMBER 1604066	-
	2017 SOIL TESTING REPORT APPROX. SCALE	DATE REVISED	
	REGIONAL MUNICIPALITY OF DURHAM NTS DURHAM YORK ENERGY CENTRE	08/25/2017	

FILE LOCATION: I:\1604066\Year 1 - 2017 Field & AMR\6. Deliverables\Phase 8001 - Durham-York Energy Centre\Soil\Appendixes\Appendix A - Photographic Log\[1604066-8001_Photographic Log xlsx]A-1

DATE PLOTTED: October 11, 2017

PHOTOGRAPH 3: VIEW OF THE DOWNWIND SOIL SAMPLING SITE, FACING SOUTHWEST.


Notes:	PHOTOGRAPHIC LOG	FIGURE NUMBER	PROJECT NUMBER	
		A-2	1604066	
	2017 SOIL TESTING REPORT	APPROX. SCALE	DATE REVISED	
	REGIONAL MUNICIPALITY OF DURHAM DURHAM YORK ENERGY CENTRE	NTS	08/25/2017	

FILE LOCATION: I:\1604066\Year 1 - 2017 Field & AMR\6. Deliverables\Phase 8001 - Durham-York Energy Centre\Soil\Appendixes\Appendix A - Photographic Log\[1604066-8001_Photographic Log.xlsx]A-1

DATE PLOTTED: October 11, 2017

APPENDIX B

CLIENT NAME: RWDI 605 ROSSLAND ROAD EAST, PO BOX 710 WHITBY, ON L1N0A9 (905) 668-7711

ATTENTION TO: Timothy Boc

PROJECT: 1604066-8001

AGAT WORK ORDER: 17T256372

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Inga Kuzmina, Trace Organics Lab Manager

ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste

DATE REPORTED: Oct 05, 2017

PAGES (INCLUDING COVER): 15

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

*NOTES

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 15

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T256372 PROJECT: 1604066-8001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: RWDI

SAMPLING SITE:

ATTENTION TO: Timothy Boc

SAMPLED BY:

			Meta	als Scan inc	I. CrVI (Soil))	
DATE RECEIVED: 2017-08-24							DATE REPORTED: 2017-10-05
		SAMPLE DESCRIPTION:	UPWIND	DYEC	DOWNWIND	SOIL DUP	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2017-08-23	2017-08-23	2017-08-23	2017-08-23	
Parameter	Unit	G / S RDL	8689663	8689664	8689667	8689670	
Antimony	µg/g	0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	1	3	3	3	3	
Barium	µg/g	2	94	97	67	92	
Beryllium	µg/g	0.5	0.6	0.6	<0.5	0.6	
Boron	µg/g	5	6	5	5	7	
Cadmium	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	2	21	22	16	21	
Chromium, Hexavalent	µg/g	0.2	<0.2	<0.2	<0.2	<0.2	
Cobalt	µg/g	0.5	7.9	6.6	4.9	7.6	
Copper	µg/g	1	16	17	10	16	
_ead	µg/g	1	11	15	15	12	
Mercury	µg/g	0.10	<0.10	<0.10	<0.10	<0.10	
Molybdenum	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	
Nickel	µg/g	1	17	14	9	16	
Phosphorus	µg/g	5	691	813	592	726	
Selenium	µg/g	0.8	<0.8	<0.8	<0.8	<0.8	
Silver	µg/g	0.4	<0.4	<0.4	<0.4	<0.4	
Thallium	µg/g	0.4	<0.4	<0.4	<0.4	<0.4	
Гin	µg/g	1	<1	1	<1	<1	
Vanadium	µg/g	1	32	31	25	31	
Zinc	µg/g	5	69	78	53	70	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8689663-8689670

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17T256372 PROJECT: 1604066-8001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: RWDI

SAMPLING SITE:

ATTENTION TO: Timothy Boc

SAMPLED BY:

	PAHs (Soil)												
DATE RECEIVED: 2017-08-24								DATE REPORTED: 2017-10-05					
		SAMPLE DESC	CRIPTION:	UPWIND	DYEC	DOWNWIND	SOIL DUP						
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil						
		DATE S	SAMPLED:	2017-08-23	2017-08-23	2017-08-23	2017-08-23						
Parameter	Unit	G / S	RDL	8689663	8689664	8689667	8689670						
Fluorene	µg/g	0.12	0.05	<0.05	<0.05	<0.05	<0.05						
Anthracene	µg/g	0.16	0.05	<0.05	<0.05	0.12	<0.05						
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	0.61	<0.05						
Benzo(a)fluorene	µg/g		0.05	<0.05	< 0.05	< 0.05	<0.05						
Benzo(b)fluorene	µg/g		0.05	<0.05	<0.05	<0.05	<0.05						
Moisture Content	%		0.1	35.0	20.8	20.5	21.9						
Surrogate	Unit	Acceptabl	e Limits										
Chrysene-d12	%	50-1	40	98	63	67	82						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8689663-8689670~ Results are based on the dry weight of the soil.

Certified By:

AGAT WORK ORDER: 17T256372 PROJECT: 1604066-8001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

ATTENTION TO: Timothy Boc

CLIENT NAME: RWDI SAMPLING SITE:

SAMPLED BY: Dioxins & Furans (Soil, WHO 2005)

			DIUXIIIS	x i urans		105)				
DATE RECEIVED: 2017-08-24 DATE REPORTED: 2017									TED: 2017-10-05	
	S	SAMPLE DESCRIPTION:	UPWIND		DYEC		DOWNWIND		SOIL DUP	
		SAMPLE TYPE:	Soil		Soil		Soil		Soil	
		DATE SAMPLED:	2017-08-23		2017-08-23		2017-08-23		2017-08-23	
Parameter	Unit	G/S RDL	8689663	RDL	8689664	RDL	8689667	RDL	8689670	
2,3,7,8-Tetra CDD	ng/kg	0.1	<0.1	0.8	<0.8	0.3	<0.3	0.2	<0.2	
1,2,3,7,8-Penta CDD	ng/kg	0.2	<0.2	0.6	<0.6	0.2	0.4	0.4	0.6	
1,2,3,4,7,8-Hexa CDD	ng/kg	0.2	0.3	1	<1	0.4	<0.4	1	<1	
1,2,3,6,7,8-Hexa CDD	ng/kg	0.2	0.3	1	<1	0.3	0.6	0.4	0.8	
1,2,3,7,8,9-Hexa CDD	ng/kg	0.2	0.2	1	<1	0.3	1.0	0.4	1.2	
1,2,3,4,6,7,8-Hepta CDD	ng/kg	0.3	6.2	2	12	0.5	12.6	0.3	8.8	
Octa CDD	ng/kg	0.6	43.2	4	82	0.1	103	0.5	64.4	
2,3,7,8-Tetra CDF	ng/kg	0.1	<0.1	0.3	<0.3	0.3	<0.3	0.3	<0.3	
1,2,3,7,8-Penta CDF	ng/kg	0.2	<0.2	1	<1	0.4	<0.4	1	<1	
2,3,4,7,8-Penta CDF	ng/kg	0.2	0.2	1	<1	0.4	<0.4	0.6	<0.6	
1,2,3,4,7,8-Hexa CDF	ng/kg	0.2	0.4	0.9	<0.9	0.2	0.8	0.3	1.0	
1,2,3,6,7,8-Hexa CDF	ng/kg	0.2	0.2	0.8	<0.8	0.2	0.4	0.3	0.9	
2,3,4,6,7,8-Hexa CDF	ng/kg	0.2	<0.2	0.9	<0.9	0.2	0.5	0.4	1.0	
1,2,3,7,8,9-Hexa CDF	ng/kg	0.2	<0.2	1	<1	0.4	<0.4	1	<1	
1,2,3,4,6,7,8-Hepta CDF	ng/kg	0.3	1.7	0.7	1.3	0.3	3.2	0.3	2.6	
1,2,3,4,7,8,9-Hepta CDF	ng/kg	0.4	<0.4	0.9	<0.9	0.3	0.4	0.3	0.7	
Octa CDF	ng/kg	0.5	4.6	1	7.5	0.5	6.1	0.5	4.5	
Total Tetrachlorodibenzodioxins	ng/kg	0.1	0.5	0.8	<0.8	0.3	1.5	0.2	0.7	
Total Pentachlorodibenzodioxins	ng/kg	0.2	1.0	0.6	<0.6	0.2	2.6	0.4	1.3	
Total Hexachlorodibenzodioxins	ng/kg	0.2	2.3	1	<1	0.4	4.7	1	4.4	
Total Heptachlorodibenzodioxins	ng/kg	0.3	14.5	1	20	0.3	25.7	0.3	18.6	
Total PCDDs	ng/kg	0.6	61.5	4	103	0.5	138	0.5	89.3	
Total Tetrachlorodibenzofurans	ng/kg	0.1	2.6	0.3	7.4	0.3	3.7	0.3	2.9	
Total Pentachlorodibenzofurans	ng/kg	0.2	1.1	1	<1	0.4	2.7	1	3.2	
Total Hexachlorodibenzofurans	ng/kg	0.2	2.5	1	3.3	0.4	5.3	1	6.0	
Total Heptachlorodibenzofurans	ng/kg	0.4	4.1	0.9	4.1	0.3	8.1	0.3	5.8	
Total PCDFs	ng/kg	0.5	14.9	1	14.8	0.5	25.9	0.6	22.4	
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ		0.05	-	0.4		0.15		0.1	
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ		0.1		0.3		0.422		0.640	
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ		0.0261		0.065		0.02		0.05	

Certified By:

AGAT WORK ORDER: 17T256372 PROJECT: 1604066-8001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: RWDI

SAMPLING SITE:

SAMPLED BY:

ATTENTION TO: Timothy Boc

								54	TE DEDOD		
DATE RECEIVED: 2017-08-24								DA	TE REPOR	TED: 2017-10-05	
		SAMPLE DES	CRIPTION:	UPWIND		DYEC		DOWNWIND		SOIL DUP	
	SAMPLE TYPE:		Soil		Soil		Soil		Soil		
		DATE SAMPLED:		2017-08-23		2017-08-23		2017-08-23		2017-08-23	
Parameter	Unit	G/S	RDL	8689663	RDL	8689664	RDL	8689667	RDL	8689670	
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ			0.0285		0.065		0.0635		0.0823	
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ			0.0217		0.07		0.105		0.116	
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ			0.0616		0.121		0.126		0.0881	
Octa CDD (TEF 0.0003)	TEQ			0.0129		0.0246		0.0310		0.0193	
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ			0.005		0.015		0.015		0.015	
I,2,3,7,8-Penta CDF (TEF 0.03)	TEQ			0.003		0.0165		0.006		0.015	
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ			0.0638		0.15		0.06		0.09	
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0367		0.045		0.0750		0.104	
I,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0203		0.04		0.0422		0.0884	
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0.01		0.045		0.0495		0.102	
I,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ			0.01		0.065		0.02		0.05	
I,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ			0.0173		0.0125		0.0321		0.0265	
I,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ			0.002		0.0045		0.00417		0.00707	
Octa CDF (TEF 0.0003)	TEQ			0.00138		0.00225		0.00184		0.00134	
Total PCDDs and PCDFs (TEQ)	TEQ	7.0		0.470		1.44		1.22		1.59	

Dioxins & Furans (Soil, WHO 2005)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 17T256372 PROJECT: 1604066-8001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: RWDI

SAMPLING SITE:

ATTENTION TO: Timothy Boc

SAMPLED BY:

			Dioxins & Fu	rans (Soil, WHO 2005)		
DATE RECEIVED: 2017-08-24					DATE RE	EPORTED: 2017-10-05
		SAMPLE DESCRIPTION:	UPWIND	DYEC	DOWNWIND	SOIL DUP
		SAMPLE TYPE:	Soil	Soil	Soil	Soil
		DATE SAMPLED:	2017-08-23	2017-08-23	2017-08-23	2017-08-23
Surrogate	Unit	Acceptable Limits	8689663	8689664	8689667	8689670
13C-2378-TCDF	%	40-130	68	63	69	58
13C-12378-PeCDF	%	40-130	64	69	68	61
13C-23478-PeCDF	%	40-130	68	69	69	44
13C-123478-HxCDF	%	40-130	58	58	53	53
13C-123678-HxCDF	%	40-130	55	58	51	52
13C-234678-HxCDF	%	40-130	62	61	58	58
13C-123789-HxCDF	%	40-130	57	61	56	54
13C-1234678-HpCDF	%	40-130	49	64	48	52
13C-1234789-HpCDF	%	40-130	50	74	55	56
13C-2378-TCDD	%	40-130	99	77	100	86
13C-12378-PeCDD	%	40-130	90	79	93	63
13C-123478-HxCDD	%	40-130	79	66	77	74
13C-123678-HxCDD	%	40-130	77	66	68	71
13C-1234678-HpCDD	%	40-130	65	78	67	74
13C-OCDD	%	40-130	52	94	57	59

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1 (D&F)

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8689663-8689670 The results were corrected based on the surrogate percent recoveries.

Certified By:

	agat.	Laboratories	Guideline Violat AGAT WORK ORDER: 17T256 PROJECT: 1604066-8001			MISSIS	OOPERS AVENUE SAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 /www.agatlabs.com
CLIENT NAME	E: RWDI			ATTENTION TO: Timot	hy Boc		aganazoroom
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
8689667	DOWNWIND	ON T1 S RPI/ICC	PAHs (Soil)	Benzo(a)pyrene	µg/g	0.3	0.61

Quality Assurance

CLIENT NAME: RWDI

PROJECT: 1604066-8001

SAMPLING SITE:

AGAT WORK ORDER: 17T256372

ATTENTION TO: Timothy Boc

SAMPLED BY:

				Soi	l Ana	alysis	5																
RPT Date: Oct 05, 2017			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE								
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	leasured Acceptable Limits F Lower Upper		Recovery	Lie	ptable nits	Recovery		ptable nits								
		ld					value			Lower Upper		Lower Upper		Lower Upper		Lower Upper						Upper	
Metals Scan incl. CrVI (Soil)																							
Antimony	8693077		<0.8	<0.8	NA	< 0.8	99%	70%	130%	86%	80%	120%	84%	70%	130%								
Arsenic	8693077		4	4	NA	< 1	99%	70%	130%	92%	80%	120%	99%	70%	130%								
Barium	8693077		76	77	1.3%	< 2	113%	70%	130%	99%	80%	120%	101%	70%	130%								
Beryllium	8693077		<0.5	<0.5	NA	< 0.5	102%	70%	130%	94%	80%	120%	107%	70%	130%								
Boron	8693077		7	7	NA	< 5	100%	70%	130%	97%	80%	120%	106%	70%	130%								
Cadmium	8693077		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	110%	70%	130%								
Chromium	8693077		16	17	6.1%	< 2	92%	70%	130%	96%	80%	120%	98%	70%	130%								
Chromium, Hexavalent	8693097		<0.2	<0.2	NA	< 0.2	101%	90%	110%	98%	90%	110%	101%	70%	130%								
Cobalt	8693077		7.2	7.4	2.7%	< 0.5	94%	70%	130%	94%	80%	120%	90%	70%	130%								
Copper	8693077		18	18	0.0%	< 1	105%	70%	130%	116%	80%	120%	144%	70%	130%								
Lead	8693077		9	9	0.0%	< 1	102%	70%	130%	97%	80%	120%	98%	70%	130%								
Mercury	8693077		<0.10	<0.10	NA	< 0.10	111%	70%	130%	93%	80%	120%	98%	70%	130%								
Molybdenum	8693077		<0.5	<0.5	NA	< 0.5	100%	70%	130%	102%	80%	120%	99%	70%	130%								
Nickel	8693077		15	16	6.5%	< 1	99%	70%	130%	94%	80%	120%	91%	70%	130%								
Phosphorus	8693077		658	688	4.5%	< 5	99%	80%	120%	99%	80%	120%	114%	70%	130%								
Selenium	8693077		2.0	1.9	NA	< 0.8	101%	70%	130%	94%	80%	120%	103%	70%	130%								
Silver	8693077		<0.4	<0.4	NA	< 0.4	97%	70%	130%	101%	80%	120%	98%	70%	130%								
Thallium	8693077		<0.4	<0.4	NA	< 0.4	98%	70%	130%	101%	80%	120%	93%	70%	130%								
Tin	8693077		<1	<1	NA	< 1	110%	70%	130%	92%	80%	120%	95%	70%	130%								
Vanadium	8693077		26	27	3.8%	< 1	95%	70%	130%	91%	80%	120%	94%	70%	130%								
Zinc	8693077		37	37	0.0%	< 5	104%	70%	130%	117%	80%	120%	118%	70%	130%								

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. QA Qualifier for metals - Copper: For a multi-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10%

absolute and it is considered acceptable.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Amanjot Bhela

Page 8 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: RWDI

PROJECT: 1604066-8001

SAMPLING SITE:

AGAT WORK ORDER: 17T256372

ATTENTION TO: Timothy Boc

SAMPLED BY:

Trace Organics Analysis REFERENCE MATERIAL METHOD BLANK SPIKE DUPLICATE RPT Date: Oct 05, 2017 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Measured Limits Limits Blank Limits RPD PARAMETER Batch Dup #1 Dup #2 Recovery Recovery ld Value Lower Upper Lower Upper Lower Upper PAHs (Soil) 50% 86% 50% 140% Fluorene 8676968 < 0.05 < 0.05 NA < 0.05 115% 50% 140% 91% 140% Anthracene 8676968 140% < 0.05 < 0.05 NA < 0.05 113% 50% 140% 93% 50% 140% 89% 50% Benzo(a)pyrene 8676968 < 0.05 < 0.05 NA < 0.05 120% 50% 140% 92% 50% 140% 91% 50% 140% Benzo(a)fluorene 8676968 < 15 < 15 NA < 15 NA 70% 130% 98% 50% 150% 92% 50% 150% Benzo(b)fluorene 8676968 < 15 < 15 NA < 15 NA 70% 130% 96% 50% 150% 91% 50% 150%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Page 9 of 15

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: RWDI

PROJECT: 1604066-8001

SAMPLING SITE:

AGAT WORK ORDER: 17T256372 ATTENTION TO: Timothy Boc

SAMPLED BY:

			UI	tra T	race	Anal	ysis								
RPT Date: Oct 05, 2017			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.10	ptable nits	Recovery		ptable nits
		Id					Value	Lower	Upper		Lower	Upper		Lower	Upper
Dioxins & Furans (Soil, WHO 2005	5)														
2,3,7,8-Tetra CDD	1	8693189	< 0.1	< 0.1	NA	< 0.1	91%	40%	130%	NA	40%	130%	94%	40%	130%
1,2,3,7,8-Penta CDD	1	8693189	< 0.1	< 0.1	NA	< 0.1	115%	40%	130%	NA	40%	130%	120%	40%	130%
1,2,3,4,7,8-Hexa CDD	1	8693189	< 0.2	< 0.2	NA	< 0.2	114%	40%	130%	NA	40%	130%	115%	40%	130%
1,2,3,6,7,8-Hexa CDD	1	8693189	< 0.2	< 0.2	NA	< 0.2	123%	40%	130%	NA	40%	130%	130%	40%	130%
1,2,3,7,8,9-Hexa CDD	1	8693189	< 0.2	< 0.2	NA	< 0.2	103%	40%	130%	NA	40%	130%	125%	40%	130%
1,2,3,4,6,7,8-Hepta CDD	1	8693189	< 0.3	< 0.3	NA	< 0.3	120%	40%	130%	NA	40%	130%	97%	40%	130%
Octa CDD	1	8693189	0.9	0.8	11.8%	< 0.3	114%	40%	130%	NA	40%	130%	98%	40%	130%
2,3,7,8-Tetra CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	117%	40%	130%	NA	40%	130%	123%	40%	130%
1,2,3,7,8-Penta CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	113%	40%	130%	NA	40%	130%	115%	40%	130%
2,3,4,7,8-Penta CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	118%	40%	130%	NA	40%	130%	121%	40%	130%
1,2,3,4,7,8-Hexa CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	117%	40%	130%	NA	40%	130%	119%	40%	130%
1,2,3,6,7,8-Hexa CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	116%	40%	130%	NA	40%	130%	119%	40%	130%
2,3,4,6,7,8-Hexa CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	114%	40%	130%	NA	40%	130%	123%	40%	130%
1,2,3,7,8,9-Hexa CDF	1	8693189	0.1	0.1	0.0%	< 0.1	119%	40%	130%	NA	40%	130%	122%	40%	130%
1,2,3,4,6,7,8-Hepta CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	120%	40%	130%	NA	40%	130%	104%	40%	130%
1,2,3,4,7,8,9-Hepta CDF	1	8693189	< 0.1	< 0.1	NA	< 0.1	123%	40%	130%	NA	40%	130%	121%	40%	130%
Octa CDF	1	8693189	< 0.5	< 0.5	NA	< 0.5	100%	40%	130%	NA	40%	130%	102%	40%	130%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 10 of 15

QA Violation

CLIENT NAME: RWDI

PROJECT: 1604066-8001

AGAT WORK ORDER: 17T256372 ATTENTION TO: Timothy Boc

RPT Date: Oct 05, 2017			REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Id Sample Description		Acceptable Limits		Recovery	Lir	ptable nits	Recovery	Lin	eptable mits
			Value	Lower	Upper		Lower	Upper		Lower	Upper
Metals Scan incl. CrVI (Soil)											
Copper		UPWIND	105%	70%	130%	116%	80%	120%	144%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

QA Qualifier for metals - Copper: For a multi-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: RWDI PROJECT: 1604066-8001 SAMPLING SITE: AGAT WORK ORDER: 17T256372 ATTENTION TO: Timothy Boc

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium, Hexavalent	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Phosphorus	MET-93-6103	EPA SW 846-3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Tin	MET-93-6103	EPA SW 846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Trace Organics Analysis			
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(b)fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS

Method Summary

AGAT WORK ORDER: 17T256372 ATTENTION TO: Timothy Boc

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ultra Trace Analysis		1	·
2,3,7,8-Tetra CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	EPA 1613	HRMS
Octa CDD	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	EPA 1613	HRMS
Octa CDF	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzodioxins	HR-151-5400	EPA 1613	HRMS
Total PCDDs	HR-151-5400	EPA 1613	HRMS
Total Tetrachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Pentachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Hexachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total Heptachlorodibenzofurans	HR-151-5400	EPA 1613	HRMS
Total PCDFs	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDD (TEF 1.0)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDD (TEF 0.0003)	HR-151-5400	EPA 1613	HRMS
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8-Penta CDF (TEF 0.03)	HR-151-5400	EPA 1613	HRMS
2,3,4,7,8-Penta CDF (TEF 0.3)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	EPA 1613	HRMS
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	EPA 1613	HRMS
Octa CDF (TEF 0.0003)	HR-151-5400 HR-151-5400	EPA 1613	HRMS
Total PCDDs and PCDFs (TEQ)	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS
13C-2378-TCDF	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS
13C-12378-PeCDF	HR-151-5400 HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDF 13C-23478-PeCDF	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS
13C-123478-PeCDF 13C-123478-HxCDF	HR-151-5400 HR-151-5400	EPA 1613 EPA 1613	HRMS

CLIENT NAME: RWDI PROJECT: 1604066-8001 SAMPLING SITE¹

CLIENT NAME: RWDI

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 17T256372 ATTENTION TO: Timothy Boc

PF	ROJECT: 1604066-8001		ATTENTION TO
SA	MPLING SITE:		SAMPLED BY:
	PARAMETER	AGAT S.O.P	LITERATURE REFERENCE
13	C-123678-HxCDF	HR-151-5400	EPA 1613
1			

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-123678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-234678-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-123789-HxCDF	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-1234789-HpCDF	HR-151-5400	EPA 1613	HRMS
13C-2378-TCDD	HR-151-5400	EPA 1613	HRMS
13C-12378-PeCDD	HR-151-5400	EPA 1613	HRMS
13C-123478-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-123678-HxCDD	HR-151-5400	EPA 1613	HRMS
13C-1234678-HpCDD	HR-151-5400	EPA 1613	HRMS
13C-OCDD	HR-151-5400	EPA 1613	HRMS

			abor	lg	ories	Ph: 90		ssissau 2.5100	835 Coop Iga, Ontari Fax: 905 bearth.ag	o L42 . 712 .	2 1Y2 5 122		Wa	ork Or ooler (der # Quan	tity:	1-		nly T2	.5	6	3.	71	-	
Chain of Custody Rec Report Information: Company:	Ord If this is	a Drinking Wa	ter sample, p	olease us	ee Drinking Water Chain of Custody Form (Regulatory Requirements: (Please check all applicable boxes)				d by human	-	men	t	Cu	rival 1 Istody otes:				-	S. □Yes	4	5			7.0	3 3 3 N/A
Contact: Address: CoveLPA o CoveLPA o CoveLPA o 519 823 1311 x Reports to be sent to: 1. Email: 2. Email: PEJ @ Rw Project Information: Project: 160 4066 - 8	$\frac{11647E}{N} \frac{100}{100} 1$, 4PG 19823 13)l ©		Regulation 153/04 Sewe Table	itary			Regulation COME Prov. Water Dbjectives Dther Indicate Guildellin te of An	Qual (PWQ) One	D)		Tu Re	rnai gula sh Tr	r TA AT (R 3 Bus Days OR D Pl	T sines ate	ss Requ	ges App uired u	2 B Day (Rush	o 7 Bu Busine ys I Surc	ess charge	ess Da C ges Ma n for r] Ne Da ay App	ply):	siness
Site Location: DOR A AM Sampled By: DOM / MT AGAT Quote #: 528 - 2013					🗆 Yes 🕅 No			Yes		N									weeke s, plea				5		
Please note: If quotation num Invoice Information: Company: ZEGON OF Contact: Address: Email:		Bill To Same:			Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered Metals, Hg, CrVI	Metals and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals 153 Metals (Incl. Hydrides)	ORPS: DBHWS DC DCN DCr ^{ee} DEC DFOC DHg DAH DSAR	Full Metals Scan	om Met		S: OVOC BTEX OTHM	l - F4] Total 🛛 Aroclors	Organochlorine Pesticides	TCLP:	10 1 2 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	S. 49 , 15 , 15 , 60 , CT	N'V ZA, CN	ANT MELCUCY	(a) Manie Per	NS + FURANS
Sample Identification	Date Sampled	Time Sampled	# of Containers	Samp Matri		Y/N	Metals	All Met	ORPs:	Full Me	Regulat		Volatiles:	PHCs F1 -	ABNs	PAHs	PCBs: 🗆 Total	Organo	TCLP:	Sewer Use	Se'	S, H	HAR	Den2	Dioxwy
UPWIND Drec Daunwindd	23/08/17	9.30	3	5	QUOTE										0						×	×	×	× 7	× × × × × ×
Soil Dup	23/28/14		3	S	•																		_		* *
																				_					
							-																		
Samples Relinquished By (Print Nation and Sign) Samples Relinquished By (Print Atime and Sign): 30 : 7 / 0	8/24	Date	Tiç	B: 45	Samples Received By (Pint Name and Sign): Samples Beceived By (Pint Name and Sign): Samples Received By (Pint Name and Sign):	2	01	10	8/24		Date Date			n	me	3	5			Page	e	0	ıf		
alampies neiniquisneu by (rinn name and Sign).		Date			symplex received by fram within and please.				Diple	Conv	1	L Ve	allow			ті	W/bi		o: T	0	5	84	4	8	0.0610

Methyl Mercury Results Flett Research Ltd. 440 DeSalaberry Ave. Winnipeg, MB R2L 0Y7 Fax/Phone (204) 667-2505 E-mail: flett@flettresearch.ca Webpage: http://www.flettresearch.ca

	CLIENT:	AGAT Labs	- Mississauga:	17T256372		Matrix:	Sediment (wet)		
		5835 Coopers Avenu	e			Transaction ID:	593		
		Mississauga, ON L4	IZ 1Y2			PO/Contract No.:			
		September 7, 2017				Date Analysed:	September 11, 2017		
	Sampling Date:	August 23, 2017				Analyst(s):	Xiang W.		
	Analytical Method:		ry in Sediment by Distillation, Ad od and SOPs\M10240 MeHg in				nstruments (Version 2)		
	Detection Limit:	0.4	ng/g (ML)		The MDL was de a 200 mg wet sar		ter than 7 replicates of an	alytical blanks (98% confide	ence level) and
				For reporting purposes practical quantitation lin		gged below the ML whic	h is considered a		
	Estimated	The estimated uncertain	nty of this method has been dete	ermined to be ± 20% at a	a concentration le	vel of 0.1 and 170 ng/g	(95% confidence)		
	Uncertainty:								
		Results authorized by	Dr. Robert J. Flett, Chief Sc	ientist					
		-							
		Blanks		pg of MeHg in whole ethylation EPA vial	Gross Peak Area	Mean Ethylation Blank (ng/L)			
			Ethylation blank (H ₂ 0+Reagent)	0.39	1625	0.01			
			Mean Eth. Blank (last 30 runs)	0.29		0.01			
				Net pg MeHg in whole	Gross Peak				
				Ethylation EPA vial	Area				
			Method Blank 1	0.01	1664				
			Method Blank 2 Method Blank 3	0.04 -0.01	1804 1592				
			Mean Method Blank	0.01	1592				
		Standards		MeHg Standard Added to Ethylation EPA Vial (pg CH ₃ Hg)	Gross Peak Area	Net Corrected MeHg Std Calibration Factor (units / pg)			
			Mean Value			7067			
QU	ALITY DATA	Spike Recovery Matrix Spike (MS) and Matrix Spike Duplicate (MSD)	Sample Identification	Sample Type	Gross Peak Area	% CH₃Hg Recovery Used for Calculations	Wet Sample Mass (g)	Net CH ₃ Hg as Hg (ng/g-Wet- Wt)	CH ₃Hg Recovery (%)
			UPWIND (8689663)	MS2	1476017	100%	0.473	10	94.5
			UPWIND (8689663)	MS2D	1493553	100%	0.538	9	95.1
			Mean of Recoveries						94.8
		QC Samples	FRES02 ID1201 (27.4± 3.6 ng/g)		842447	100%	0.116		86.9
			FRES02 ID1201 (27.4± 3.6 ng/g)	Repeat Aliquot	823695	100%	0.116	<u> </u>	84.9
			Mean of FRES02						85.9
		Alternate Source Standard (A.S.S.)	A.S.S Alfa ID1302 (1000 ng/L)		224439	100%		<- Net CH ₃ Hg as Hg (ng/L)	107.2
LAB ID	Sampling Details	Sample ID	Date Sampled	Sample Type	Gross Peak Area	% CH3Hg Recovery Used for Calculations	Weighed Wet Sample Mass (g)	Net CH3Hg as Hg (ng/g) Wet Wt. [recovery corrected]	
83690	UPWIND	8689663	August 23, 2017		30461	94.8	0.5300	~ 0.19	
83691	DYEC	8689664	August 23, 2017		41304	94.8	0.5460	~ 0.25	
83692	DOWNWIND	8689667	August 23, 2017		37471	94.8	0.4830	~ 0.26	
83693	SOIL DUP	8689670	August 23, 2017		22975	94.8	0.3490	~ 0.21	
83693	SOIL DUP	8689670	August 23, 2017	DupA2	24707	94.8	0.3680	~ 0.21	

Q:\Clients A-L\AGAT Labs - Mississauga\2017(593)\Methyl Mercury\MTSEDW091517XW2.xls

* : See 'Comments' section above for discussion

M10200-1 Version 111414

~ : Result below the official detection limit for this analyte in this matrix.

This test report shall not be reproduced, except in full, without written approval of the laboratory. Note: Results relate only to the items tested.

Dup : Duplicate - two subsamples of the same sample carried through the analytical procedure in an identical manner

CLIENT NAME: RWDI 650 WOODLAWN ROAD WEST GUELPH, ON N1K1B8 (519) 823-1311

ATTENTION TO: Timothy Boc

PROJECT: 1604066.8001

AGAT WORK ORDER: 17T273944

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Oct 26, 2017

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

%

Certificate of Analysis

AGAT WORK ORDER: 17T273944 PROJECT: 1604066.8001

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: RWDI

SAMPLING SITE:

Chrysene-d12

8835098

ATTENTION TO: Timothy Boc

SAMPLED BY:

O. Reg. 153(511) - PAHs (Soil)											
DATE RECEIVED: 2017-10-18					DATE REPORTED: 2017-10-26						
		SAMPLE DESC	RIPTION:	DOWNWIND							
	SAMPLE TYPE:		Soil								
		DATE SAMPLED:		2017-10-18							
Parameter	Unit	G/S	RDL	8835098							
Benzo(a)pyrene	µg/g	0.3	0.05	0.28							
Moisture Content	%		0.1	27.3							
Surrogate	Unit	Unit Acceptable Limits									

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Comments: Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

119

Certified By:

Quality Assurance

CLIENT NAME: RWDI

PROJECT: 1604066.8001

SAMPLING SITE:

AGAT WORK ORDER: 17T273944

ATTENTION TO: Timothy Boc

SAMPLED BY:

			Trac	e Or	ganio	cs Ar	nalysi	is							
RPT Date: Oct 26, 2017			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil) Benzo(a)pyrene	8831399		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	95%	50%	140%	95%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

pur

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 3 of 5

CLIENT NAME: RWDI

PROJECT: 1604066.8001

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 17T273944

ATTENTION TO: Timothy Boc

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis	L										
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS								
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270	BALANCE								
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS								

Company: Contact: TimoTHy Boc				otable wa	ater co	nsumed	by humans)	s.com			er Qua al Tem		ures:	3	20	30	13	8
Contact.InterferenceAddress: 600 South GATE DL.Gueler HONNG 41Phone: 519 B33 - 1311 + 2312Reports to be sent to:TFB @ RWD(I, COWA1. Email:TFB @ RWD(I, COWA2. Email:PEJ @ KWDI, COWAProject Information:Project:Ko4066 - 8001Site Location:DYEC	(P)	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Sewer Use Regulation 153/04 Sewer Use Table Sanitary Ind/Com Sanitary ResyPark Storm Agriculture Region Soil Texture (check one) Indicate One Fine MISA Is this submission for a Report Guideline on Record of Site Condition? Yes Yes No						Custody Seal Intact: Yes No N/A Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Bays 2 Business Day Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays										
Sampled By: TFB AGAT Quote #: 528 - 203 PO: Please note: If quotation number is not provided, client will be billed full price PO: Invoice Information: Bill To Same: Company: REGON OF DURHAM Contact: Address: Email: Email:	e for analysis Yes 🗌 No 🌶	B G O P S S	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint	Field Filtered - Metals, Hg, CrVI		153 Metals (excl. Hydrides) s 🗌 153 Metals (Incl. Hydrides)	WS CC CN. FOC CHR FOC CHR Can		Nutrients: DTP DNH ₃ DTKN DNO ₃ DNO ₂ DNO ₂ +NO ₂	OVOC DBTEX DTHM			PCBs: Total Aroclors	Organochlorine Pesticides TCLP: D M&I D VOCS D ABNS D B(a)P DPCBS		Scola) RyRENE		:PM
Sample Identification Date Sampled Time Sampled DOWNWIND IB cc.7-17 9:00	# of Containers	Sample Matrix		Y/N	Metais	C All Me	ORPs: 08H 0.01 0.01 0.01 <th>Regula</th> <th></th> <th>Volatiles:</th> <th>ABNS</th> <th>PAHS</th> <th>PCBs: [</th> <th>Organc TCLP:</th> <th>Sewer Use</th> <th>X BENZO</th> <th></th> <th></th>	Regula		Volatiles:	ABNS	PAHS	PCBs: [Organc TCLP:	Sewer Use	X BENZO		
Samples Relinquished By (Prins Name and Sign): Samples Relinquished By (Prins Name and Sign): Samples Relinquished By (Print	27-17 Time		Samples Received By (Print baline and Sign): Samples Received By (Print baline and Sign):	H	4	2		Date Date	1.19	117	Time	13	5	Nº: T	Page		of 1	