FINAL REPORT

REGIONAL MUNICIPALITY OF DURHAM

WHITBY, ONTARIO

DURHAM YORK ENERGY CENTRE: 2020 SOIL TESTING REPORT RWDI #2000603 October 20, 2020

SUBMITTED TO

Lyndsay Waller, B.Sc., EP Regional Municipality of Durham Lyndsay.Waller@Durham.ca

Regional Municipality of Durham 605 Rossland Road East P.O. Box 623 Whitby, ON L1N 6A3

T: 905.668.7711 | ext. 3445

SUBMITTED BY

Claire Finoro, P.Eng., B.Sc. (Eng) Project Manager Claire.Finoro@rwdi.com

Philippe Janisse, B.Sc., P.Geo. Sr. Geoscience Specialist Philippe.Janisse@rwdi.com | ext. 2617

RWDI AIR Inc. Consulting Engineers & Scientists 600 Southgate Drive Guelph, ON N1G 4P6

T: 519.823.1311 F: 519.823.1316

Ms. Lyndsay Waller, B.Sc., EP Regional Municipality of Durham 1835 Energy Drive Clarington, ON L1E 2R2

RE: 2020 Soil Testing Report Durham York Energy Centre <u>RWDI Reference No. 2000603, 8000</u>

Dear Ms. Waller,

RWDI AIR Inc. (RWDI) is pleased to provide this 2020 Soil Testing Report for the Durham York Energy Centre (DYEC) in consideration of the document entitled '*Durham York Energy Centre Soil Testing Plan, Revision 4*' dated July 10, 2020.

Field work associated with the 2020 Soil Testing Program was completed on August 19, 2020. Complete soil analytical results were received from the laboratory on September 29, 2020. This report provides details of the soil testing program completed in 2020 for DYEC and an interpretation of the 2020 monitoring data, including our conclusions and recommendations. Relevant technical data are appended.

We trust that this 2020 Soil Testing Report for DYEC provides sufficient information for your requirements. Should there be any questions or comments, please contact us.

Yours very truly,

RWDI AIR Inc.

Philippe Janisse, B.Sc., P.Geo. Sr. Geoscience Specialist

PEJ/CIF/kta

Attach.

EXECUTIVE SUMMARY

DYEC is an energy-from-waste facility located in the Municipality of Clarington, Regional Municipality of Durham, Ontario. DYEC is situated on the southwest corner of Osborne Road and Energy Drive. DYEC is bounded by commercial and industrial property uses to the north and east, the Canadian National Railway to the south and undeveloped lands to the west. A Location Map is presented in **Figure 1**.

DYEC is operated under multi-media Environmental Compliance Approval No. 7306-8FDKNX, dated June 28, 2011 (ECA). A baseline soil quality study was undertaken as part of the Environmental Assessment (EA) to characterize background soil conditions in the vicinity of DYEC prior to its operation. The soil quality results of the baseline study satisfied the Table 1 criteria, where applicable, of the *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011).* Per Condition 7(10) and 13 (4) of the ECA, the Soil Testing Plan (*Durham York Energy Centre Soil Testing Plan, The Regional Municipality of Durham*, dated March 7, 2014) was prepared. The Soil Testing Plan was based, in part, on the findings of the baseline soil study.

The Soil Testing Plan was subsequently revised in 2020 (*'Durham York Energy Centre Soil Testing Plan, Revision 4'* dated July 10, 2020). Included in the revisions was discontinuing soil sampling at the DYEC property line station, as the ambient air monitoring station at this location was decommissioned in 2018. Soil sampling is completed at each of the DYEC ambient air monitoring stations and given the ambient air monitoring station at this location was decommissioned, the soil quality assessment is no longer necessary. The Ministry of the Environment Conservation and Parks (MECP) approved the removal of this soil quality assessment station from the Soil Testing Plan per an email from Philip Dunn, Senior Environmental Officer, MECP to Andrew Evans, Project Manager - Waste Planning and Technical Services, Region of Durham, dated August 31, 2020 (**Appendix A**).

This report was prepared to satisfy the requirements of the Soil Testing Plan as well as ECA No. 7306-8FDKNX.

The following conclusions are based on the findings presented in this report.

- The soil sampling grid established at the upwind sampling location was constructed by RWDI personnel based on a previously established metal T-fence post benchmark installed at the southeast corner of the grid outline. The soil sampling grid established at the downwind location was left in place from the previous sample collection efforts.
- Overall, parameter concentrations observed at the upwind and downwind soil sampling locations in 2020 were generally comparable to historical concentrations.
- The observed concentrations of the analyzed parameters for the Upwind and Downwind sample aliquots satisfied the Table 1 criteria of the MECP Standards.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Background	1
1.2	Objectives and Scope	1
1.3	Assumptions and Limitations	. 2
2	METHODOLOGY	.2
2.1	Soil Sampling Location Preparation	.2
2.2	Soil Sampling	3
	2.2.1 Soil Sample Holding Times	3
	2.2.2 Decontamination Procedure	4
2.3	Laboratory Analytical Parameters	.4
3	RESULTS AND EVALUATION	.4
3.1	Quality Assurance and Quality Control	.4
3.2	Field Documentation	. 5
3.3	Soil Quality	. 6
	3.3.1 Metals	6
	3.3.2 Polycyclic Aromatic Hydrocarbons	7
	3.3.3 Dioxins and Furans	7
4	FUTURE MONITORING	.7
5	CONCLUSIONS AND RECOMMENDATIONS	.7
6	STUDY LIMITATIONS	.8
7	CLOSURE	.9
-		

LIST OF TABLES

- Table 1:
 Relative Percent Difference Analysis
- **Table 2:**Soil Analytical Results Metals
- Table 3:
 Soil Analytical Results Polycyclic Aromatic Hydrocarbons
- Table 4:
 Soil Analytical Results Dioxins and Furans

LIST OF FIGURES

- Figure 1: Site Location Plan
- Figure 2: Upwind Sample Location Plan
- Figure 3: Downwind Sample Location Plan

LIST OF APPENDICES

- Appendix A: Correspondence
- Appendix B: Photographic Log
- Appendix C: Laboratory Certificates of Analysis

1 INTRODUCTION

1.1 Background

Durham York Energy Centre (DYEC) is an energy-from-waste facility located in the Municipality of Clarington, Regional Municipality of Durham, Ontario. DYEC is situated on the southwest corner of Osborne Road and Energy Drive. DYEC is bounded by commercial and industrial property uses to the north and east, the Canadian National Railway and the Courtice Water Pollution Control Plant (CWPCP) to the south and undeveloped lands to the west. A Location Map is presented in **Figure 1**.

DYEC is operated under a multi-media Environmental Compliance Approval 7306-8FDKNX, dated June 28, 2011 (ECA). A baseline soil quality study was undertaken as part of the Environmental Assessment (EA) to characterize background soil conditions in the vicinity of DYEC prior to its operation. The soil quality results of the baseline study satisfied the Table 1 criteria, where applicable, of the *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011).* Per Condition 7(10) and 13 (4) of the ECA, the Soil Testing Plan (*Durham York Energy Centre Soil Testing Plan, The Regional Municipality of Durham*, dated March 7, 2014) was prepared. The Soil Testing Plan was based, in part, on the findings of the baseline soil study.

Subsequent soil testing events were undertaken in 2013 (prior to DYEC operations), 2015 (representing year 1 of DYEC operations), in 2016 (representing year 2 of DYEC operations), and in 2017 (representing year 3 of DYEC operations). Soil samples were collected from the designated upwind and downwind sampling locations, as well as on-site during the 2015, 2016, and 2017 sampling events.

The Soil Testing Plan was subsequently revised in 2020 ('*Durham York Energy Centre Soil Testing Plan, Revision 4*' dated July 10, 2020). Included in the revisions was discontinuing soil sampling at the DYEC property line station, as the ambient air monitoring station at this location was decommissioned in 2018. Soil sampling is completed at each of the ambient air monitoring stations and given the ambient air monitoring station at this location was decommissioned, soil quality assessment is no longer required. The Ministry of the Environment Conservation and Parks (MECP) approved the removal of this soil quality assessment station from the Soil Testing Plan per an email from Philip Dunn, Senior Environmental Officer, MECP to Andrew Evans, Project Manager - Waste Planning and Technical Services, Region of Durham, dated August 31, 2020 (**Appendix A**).

This report was prepared to satisfy the requirements of the Soil Testing Plan as well as ECA No. 7306-8FDKNX, dated June 28, 2011 (plus amendments).

1.2 Objectives and Scope

The objectives of the 2020 Soil Testing Program for DYEC are outlined below.

• To evaluate soil quality upwind and downwind of DYEC for potential effects as a result of DYEC operations.

- To compare the current year's soil quality data to the baseline data, historical data, the Table 1 criteria of the MECP "Soil, Groundwater, and Sediment Standards For Use Under Part XV.1 of the Environmental Protection Act", (MECP Standards), as well as soil quality data between soil sampling locations.
- To determine whether or not there is the need to implement a contingency plan as outlined in the Soil Testing Plan, in consideration of soil testing findings.
- To provide a report presenting the findings of the Soil Testing Program to Durham Region and the MECP.

The primary aspects of the Soil Testing Program are data collection, analysis, and interpretation. This 2020 Soil Testing Report documents the data collected as part of the 2020 Soil Testing Program and the data were interpreted in consideration of the requirements set forth in the Soil Testing Plan, as well as historical data.

To evaluate the soil quality upwind and downwind of the Site, analytical results were assessed against the Table 1 criteria of the MECP Standards. The 2020 Soil Testing Program involved a data collection component and a comprehensive analysis and interpretation component. Historical data were provided to RWDI by Durham Region. The 2020 data was collected, assembled, and analyzed by RWDI.

1.3 Assumptions and Limitations

Relevant historical data were provided to RWDI by Durham Region. The historical data provided by Durham Region for the purposes of preparing this 2020 Soil Testing Report has been relied upon by RWDI for our assessment. RWDI has assumed that the information provided was factual and accurate as presented.

2 METHODOLOGY

Soil samples were collected from each designated sampling location (upwind and downwind of DYEC). Each soil sampling location was established adjacent to an existing ambient air monitoring station. The upwind soil sampling location was established at the western portion of the Courtice Water Pollution Control Plant (CWPCP), about 600 metres southwest of the Site. The location of the upwind soil sampling location is presented in **Figure 2**. The downwind soil sampling location was established on a parcel of private property leased by Durham Region, which is located near the southeast corner of the Baseline Road and Rundle Road intersection, about 2 kilometres northeast of DYEC. The location of the downwind soil sampling location is presented in **Figure 3**.

2.1 Soil Sampling Location Preparation

The upwind soil sampling location was constructed by RWDI personnel based on a previously established metal fence post. The metal post was installed at the southeast corner of the soil sampling location. A measuring tape was used to lay out the remaining three (3) corners of the sampling location to establish sub-plots within a sampling grid. Wooden stakes were installed at each corner, creating a ten (10) metre by ten (10) metre square. Nine (9) equally distributed sub-plots were then established within each ten (10) metre square using the measuring tape and wooden stakes. Each sub-plot consisted of a 3.3 metre by 3.3 metre square. The sampling grids were then completed by delineating each sub-plot with rope secured to the metal posts and wooden stakes.

The downwind soil sampling location remained relatively unchanged from the previous sampling event and was considered relatively undisturbed. As such, the soil sample was collected within the established grid at the downwind soil sampling location. It should be noted the tall vegetation prevented the delineation of the sub-plots using rope. RWDI personnel used caution such that sample was accurately collected within the established grid. Photographs of each sample grid are presented in **Figure B-1**, **Appendix B** for reference.

The position of each corner of the sampling locations was recorded using a handheld GPS unit. The coordinates were recorded in UTM NAD 83 format for reference, if required. Following sample collection, the temporarily constructed grid established at the upwind soil sampling location was removed, with the exception of the aforementioned metal fence post benchmark, which was maintained for future reference at this location. The downwind soil sampling location was left in place following sample collection, in consideration of past practice.

2.2 Soil Sampling

One (1) composite soil sample was collected from each soil sampling location on August 19, 2020. Compositing samples consisted of combining soil aliquots collected from nine (9) sub-plots for each soil sampling grid, which were established per Section 2.1. An equal volume of soil (approximately 500 mL) was collected from each sub-plot, for a total of approximately 4,500 mL of soil that was collected from each soil sampling location. The soil was collected from surface to approximately two (2) centimetres below ground surface (cm BGS) using a stainless-steel trowel. Vegetation and rootlets were excluded from the sample, where practical. The soil aliquots from each sub-plot were placed into a stainless-steel bowl and homogenized prior to filling the laboratory provided sample jars.

Per Section 4.4 of the Soil Testing Plan, one (1) replicate soil sample was collected from each of the two (2) soil sampling locations. The replicate samples were retained by Durham Region personnel, in consideration of past practices.

2.2.1 Soil Sample Holding Times

Per Section 4.5 of the Soil Testing Plan (*Sample Handling*), container requirements for parameter analysis, storage, and preservation requirements for soil samples were carried out in accordance with the document *Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act* by MOECC Laboratory Services Branch, dated July 1, 2011. As noted in previous Soil Testing Reports, the soil sample holding times specified in the aforementioned document vary compared to the sample holding times recommended by Eurofins Environment Testing Canada Inc. (Eurofins) for select parameters, as outlined below.

Parameter Grouping	Eurofins Holding Time	MOECC Analytical Protocol*
Metals	28 days	180 days
Chromium VI	28 days	30 days
Mercury, Methyl Mercury	28 days	28 days
PAH's	14 days	60 days
Dioxins and Furans	1 year	Indefinite

Note: *Denotes protocol as per *Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act* by MOECC Laboratory Services Branch dated July 1, 2011.

Analytical results of the above parameters may be affected, should analysis be completed beyond the prescribed sample holding times. Soil samples submitted for analytical testing did not surpass their respective holding times for this soil sampling event.

2.2.2 Decontamination Procedure

The stainless-steel trowels and bowls used for soil sample collection were decontaminated between each soil sampling location. The decontamination procedure was undertaken in accordance with Section 4.5 of the Soil Testing Plan, such that the equipment was washed with an environmental grade cleanser and rinsed with deionized water, followed by acetone and hexane rinses. The sampling equipment was air-dried prior to being placed in sealed containers for storage in between soil sampling locations.

2.3 Laboratory Analytical Parameters

The soil samples collected during the 2020 Soil Testing Program were submitted to Eurofins under chain of custody procedures for analysis of the parameters listed below. Eurofins is a Canadian Association for Laboratory Accreditation (CALA) certified laboratory for analysis of the parameters listed below except for benzo(a)fluorene, benzo(b)fluorene, methyl mercury, phosphorous, and dioxins and furans (polychlorinated dibenzodioxins (PCDD) / polychlorinated dibenzofurans (PCDF)). Analysis of benzo(a)fluorene, benzo(b)fluorene, methyl mercury, and dioxins and furans were subcontracted by Eurofins to ALS Canada Ltd. (ALS). Phosphorous was subcontracted to Paracel Laboratories Ltd. (Paracel) . Both ALS and Paracel are CALA certified laboratories for the noted respective analyses.

Parameter Grouping	Parameter
Metals	Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Chromium, Chromium VI, Cobalt, Copper, Lead, Mercury, Methyl Mercury, Molybdenum, Nickel, Phosphorus, Selenium, Silver, Thallium, Tin, Vanadium, Zinc
Polycyclic Aromatic Hydrocarbons (PAH's)	Anthracene, Benzo(a)fluorene, Benzo(a)pyrene, Benzo(b)fluorene, Fluorene
Dioxins and Furans (PCDD/PCDF)	Total PCDD/PCDF

3 RESULTS AND EVALUATION

3.1 Quality Assurance and Quality Control

Quality assurance and quality control (QA/QC) measures for DYEC's Soil Testing Program in 2020 included fieldprepared duplicate samples, laboratory duplicates, laboratory spiked samples, as well as percent recovery of analysis and data review.

The laboratory analyzed several control samples to verify that the analytical equipment was functioning properly and that it would report results accurately at the time of analysis for the samples collected. The control samples had an expected target value, which was compared against pre-determined data quality objectives. For the laboratory control samples, the results were within acceptable laboratory data quality criteria.

For the field-prepared duplicate sample, the analytical results for the required parameters of analysis were evaluated by RWDI for the relative percent difference (RPD) of parameter concentrations using the USEPA National Functional Guidelines (US EPA 540-R-10-011) as a general QA/QC RPD screening mechanism. The RPD screening mechanism is such that for concentrations greater than five (5) times the reported detection limit (RDL), a concentration difference of less than or equal to 20% is deemed acceptable. For concentrations less than or equal to five (5) times the RDL, a concentration difference of equal to or less than the RDL is deemed acceptable. Where a calculated RPD is outside of the tolerance of the general QA/QC RPD screening mechanism, the results for the required parameters of analysis are evaluated against the applicable performance standards for sample duplicates noted in Tables 5.1 to 5.15 of the MOECC's *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, dated March 8, 2004, and amended July 1, 2011.

For the results found to be outside of the tolerance of each QA/QC evaluation, a laboratory data quality review (DQR) of the results is requested such that the concentrations are accurate as presented and are within acceptable laboratory data quality criteria. Soil duplicate samples were analyzed for the complete analytical parameter list.

One (1) field prepared soil duplicate sample was collected during the 2020 Soil Testing Program. The fieldprepared soil duplicate sample was collected from the upwind soil sampling location (designated 'Soil Dup'). The RPD results for the field prepared soil duplicate sample are included in **Table 1**. Per **Table 1**, the analyzed metals parameters satisfied QA/QC tolerances. Select PAHs, and dioxin and furan parameters showed RPD values that were above the control limits. Soil dioxin and furan concentrations were detected very close, within five times, of the respective RDL. As the measured result approaches the RDL, the uncertainty associated with the value increases. It is noted the laboratory internal QA analysis satisfied the relevant acceptance limits. Given the heterogeneity associated with soil as a sample media, the RPD analysis for PAHs, and dioxins and furans should be interpreted with caution.

Although QA/QC exceptions were identified, the relevant sample results were deemed to be representative of actual conditions at the time of sampling.

3.2 Field Documentation

Per Section 4.6 of the Soil Testing Plan, detailed field notes were collected at the time of sampling by RWDI personnel. The following table summarizes the data collected in the field.

Data Type	Information Collected
Site Name & Photograph	Durham York Energy Center. Site photographs are included in Appendix B .
GPS Coordinates for Sample Plot Locations (UTM NAD 83)	Upwind NE Corner: 680044, 4860028 Downwind NE Corner: 681968,4861867
Field Personnel's Name	Jessica Vu, Timothy Boc, Carlos Pena
Date, Time and Location of Sample Collection	Upwind: August 19, 2020, 9:30 Downwind: August 19, 2020, 12:30
Sample Number/ID	Upwind Grid: 'Upwind' Downwind Grid: 'Downwind'
Whether QA/QC Samples Were Collected	One (1) field prepared duplicate sample. One (1) replicate sample collected for retention by Durham Region at each sample grid location.
Type of Containers Used for Collection	Four (4) 250 mL glass amber jars for each sampling grid were provided by Eurofins.
Whether samples were Preserved	Samples were not preserved, as specified by Eurofins.
Sampling Method and Composite Collection Pattern/Map of Test Plot Area	As specified in Section 2 and Figures 2 and 3 of this Report.
Unusual Site Conditions	The Downwind sample grid was covered with waist high vegetation. A mound of soil measuring approximately 0.8x0.65x0.25 meters was observed within the Downwind soil sampling grid. The approximate position of the soil mound was documented in the field notes.
Weather Conditions	Clear , approximately 20°C.

Field notes collected at the time of sample collection are maintained on file by RWDI for future reference, if required.

3.3 Soil Quality

The soil analytical results were received in full from the laboratory on September 29, 2020. The laboratory certificates of analysis are provided in **Appendix C**.

3.3.1 Metals

The laboratory analytical results for the metals parameters analyzed at the upwind and downwind soil sampling locations in August 2020, historical data dating back to 2013 including the DYEC fence line soil sampling location (denoted DYEC), as well as a comparison to Table 1 criteria of the MECP Standards is provided in **Table 2**. Per **Table 2**, the metals parameter concentrations observed in August 2020 satisfied the Table 1 criteria of the MECP Standards. The 2020 concentrations were generally consistent with the historical metals' concentrations.

Concentrations of hexavalent chromium were consistently below the laboratory method detection limit (MDL) during past soil sampling events. Concentrations at the upwind and downwind sampling locations in 2020 were observed slightly above the MDL, however the observed concentrations were below the Table 1 criteria of the MECP Standards.

3.3.2 Polycyclic Aromatic Hydrocarbons

The laboratory analytical results for the PAH parameters analyzed at the upwind and downwind soil sampling locations in August 2020, historical data dating back to 2013, including the DYEC soil sampling location, as well as a comparison to the Table 1 criteria of the MECP Standards is provided in **Table 3**. Per **Table 3**, the PAH parameter concentrations observed in August 2020 satisfied the Table 1 criteria of the MECP Standards. The 2020 concentrations were generally consistent with historical PAH concentrations. Concentrations of benzo(a)fluorene and benzo(b)fluorene were consistently below the MDL during past soil sampling events, but were observed slightly above the MDL in 2020. Notwithstanding, though these aforementioned parameters were detected in the soil, there are no Table 1 criteria of the MECP Standards for these parameters.

3.3.3 Dioxins and Furans

The laboratory analytical results for dioxins and furans analyzed at the upwind and downwind soil sampling locations in August 2020, historical data dating back to 2013, as well as a comparison to the Table 1 criteria of the MECP Standards is provided in **Table 4**. Per **Table 4**, the dioxins and furans concentrations observed in August 2020 satisfied the Table 1 criteria of the MECP Standards. The current concentrations noted in the soil for the 2020 sampling event were generally consistent with the historical soil dioxins and furans concentrations.

4 FUTURE MONITORING

Per Section 4.2 of the Soil Testing Plan, the Soil Testing Program was undertaken annually during the first three (3) years of DYEC operations. In accordance with Condition 7.(10) (b) of the ECA, following the 2017 soil sampling event, monitoring transitioned to sampling once every three (3) years, commencing in 2020. As such, the next soil testing event is currently scheduled to be undertaken in 2023. It is suggested that the soil sampling program take place within the same season (i.e. August) to remain consistent with past sampling frequencies.

5 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are based on the findings presented in this report.

• The soil sampling grid established at the upwind sampling location was constructed by RWDI personnel based on a previously established metal T-fence post benchmark installed at the southeast corner of the grid outline. The soil sampling grid established at the downwind location was left in place from the previous sample collection efforts.

- Overall, parameter concentrations observed at the upwind and downwind soil sampling locations in 2020 were generally comparable to historical concentrations.
- The observed concentrations of the analyzed parameters for the Upwind and Downwind sample aliquots satisfied the Table 1 criteria of the MECP Standards.

The following recommendations are respectfully submitted.

- The contingency plan, per the Soil Testing Plan, does not need to be implemented at this time.
- Soil sampling should continue to follow the established three (3) year schedule. As such, the next soil sampling event is currently scheduled to be undertaken in 2023.

6 STUDY LIMITATIONS

This report was prepared using scientific principles and professional judgment in assessing available facts and presenting subjective interpretations. The professional judgments presented within this document are based on available facts within the limits of the existing information, budgeted scope of work, and schedule. It is RWDI's intent that the professional judgment and interpretive conclusions be utilized as guidance and not be necessarily construed as a firm course of action, unless explicitly stated otherwise. We make no warranties, expressed or implied, including without limitation, or warranties as to merchantability or fitness of the property for a particular purpose. The information presented in this report is not to be construed as legal advice.

RWDI relied on information obtained from Site representatives, independent sources, and other historical documentation as referenced in this report. The accuracy and completeness of third-party sources was not verified. It is noted that regulatory guidelines, standards, and related documents as they may be referenced in this report are subject to interpretation and may change over time.

This report was prepared for the exclusive use of the Regional Municipality of Durham and the Ministry of the Environment Conservation and Parks. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. RWDI accepts no responsibility for damages, if any, suffered by any third party as result of decisions made or actions based on this report.

7 CLOSURE

We trust that this 2020 Soil Testing Report for the Durham York Energy Centre is satisfactory. Please do not hesitate to contact us with any questions you may have.

Yours very truly,

RWDI

Carlos Pena, B.Sc., M.Eng. Scientist

Phil Janisse, B.Sc., P.Geo., QP_{ESA} Senior Geoscience Specialist

CEP/TFB/PEJ/kta

Attach.

n

Timothy Boc, B.E.S. Technical Team Leader - Geoscience

RWDI aims to accommodate. If you require this document in a different format in order to aid accessibility, please contact the sender of this document, email solutions@rwdi.com or call +1.519.823.1311

TABLES

Table 1: Relative Percent Difference Analysis - Soil

Durham York Energy Center The Regional Municipality of Durham Project No. 2000603.8000

				REPORTED			CONC	NTRATION <5)	RDL	CON	ICENTRATIO	N >5X RDL
SAMPLING EVENT	SAMPLE IDENTIFIER	PARAMETER	UNITS	DETECTION LIMIT	SAMPLE CONCENTRATION	REPLICATE CONCENTRATION	DIFFERENCE IN CONCENTRATION	CONTROL LIMIT (± RDL)	COMMENT	RPD %	CONTROL LIMIT	COMMENT
Aug-20	UPWIND	Metals						1.00	84			
	(SOIL DUP)	Antimony	µg/g	1	1	1	0.00	1.00	OK			
		Arsenic	µg/g	1	3	3	0.00	1.00	ОК			
		Barium	µg/g	1	97	103		1.00		6	30	ОК
		Beryllium	µg/g	1	1	1	0.00	1.00	ОК		L	\square
		Boron	µg/g	5	5	6	1.00	5.00	ОК		L	
		Cadmium	µg/g	0.4	0.4	0.4	0.00	0.40	ОК			
		Chromium, Total	µg/g	1	23.0	26.0		1.00		12	30	ОК
		Chromium, Hexavalent	µg/g	0.20	0.22	0.20	0.02	0.20	ОК			
		Cobalt	µg/g	1	7	8		1.00		13	30	ОК
		Copper	µg/g	1	15	16		1.00		6	30	ОК
		Lead	µg/g	1	11	12		1.00		9	30	ОК
		Mercury	µg/g	0.10	0.1	0.1	0.00	0.10	ОК			
		Molybdenum	µg/g	1	1	1	0.00	1.00	ОК			
		Nickel	µg/g	1	16	17		1.00		6	30	ОК
		Phosphorus	µg/g	10	760	870		10.00		13	30	ОК
		Selenium	ug/g	1	1	1	0.00	1.00	ОК			
		Silver	100	0.2	0.2	0.2	0.00	0.20	OK			
		Thallium	119/9	1	1	1	0.00	1.00	OK			
		Tin	110/0	5	5	5	0.00	5.00	OK			
		Vanadium	P8'8	2	20	21	0.00	3.00	UK	7	20	OK
		Zinc	P8/8	2	29	31		2.00		/	30	OK
		Zinc Robustis Aromatis Hudrosarbons (RA)	μ <u>β/g</u>	2	79	72		2.00		9	30	UK
		Polycyclic Arolliutic Hydrocurbolis (PA	15)	0.05	0.05	0.05		0.05	0 11			ļ
		Huorene	µg/g	0.05	0.05	0.05	0.00	0.05	OK			
		Anthracene	µg/g	0.05	0.05	0.05	0.00	0.05	ОК		<u> </u>	
		Benzo(a)pyrene	µg/g	0.05	0.05	0.05	0.00	0.05	ОК		L	\square
		Benzo(a)fluorene	µg/g	0.000099	0.0277	0.00835		0.00		107	40	EXCEEDS
		Benzo(b)fluorene	µg/g	0.000099	0.0159	0.0042		0.00		116	40	EXCEEDS
		Dioxins & Furans										
		2,3,7,8-Tetra CDD	ng/kg	0.034	0.034	0.035	0.001	0.034	ОК			
		1,2,3,7,8-Penta CDD	ng/kg	0.042	0.0860	0.0712	0.0148	0.042	ОК			
		1,2,3,4,7,8-Hexa CDD	ng/kg	0.22	0.22	0.17	0.05	0.22	ОК			
		1,2,3,6,7,8-Hexa CDD	ng/kg	0.20	0.27	0.28	0.01	0.20	ОК			
		1,2,3,7,8,9-Hexa CDD	ng/kg	0.21	0.23	0.14	0.09	0.21	ОК			
		1,2,3,4,6,7,8-Hepta CDD	ng/kg	0.33	16.00	7.50		0.33		72	40	EXCEEDS
		Octa CDD	ng/kg	1.1	116	55.7		1.1		70	40	EXCEEDS
		2,3,7,8-Tetra CDF	ng/kg	0.062	0.091	0.19	0.099	0.062	EXCEEDS			
		1,2,3,7,8-Penta CDF	ng/kg	0.060	0.10	0.104	0.004	0.060	ок			
		2,3,4,7,8-Penta CDF	ng/kg	0.053	0.358	0.294		0.053		20	40	ОК
		1,2,3,4,7,8-Hexa CDF	ng/kg	0.083	0.35	0.261	0.089	0.083	EXCEEDS			
		1,2,3,6,7,8-Hexa CDF	ng/kg	0.078	0.170	0.180	0.01	0.078	ОК			
		2,3,4,6,7,8-Hexa CDF	ng/kg	0,12	0.23	0.241	0.011	0.12	ок			
		1.2.3.7.8.9-Hexa CDF	ng/kg	0.087	0,12	0.096	0.024	0.02	ОК			
		1234678-Hepta CDF	ng/kg	0.087	3.04	2.24	0.024	0.087		20	40	ОК
		1 2 3 4 7 8 9-Henta CDF	ng/kg	0.12	0.287	0.15	0.127	0.00	EXCEEDS	50	40	
		Octo CDC	11g/ Ng	0.13	11.40	0.13	0.137	0.13	EACEEDS	42	40	EVELEDE
		Total Tatrachlorodihonzodiov'	ng/kg	0.40	0.520	/.30		0.40		43	40	EACEEDS
		Total Pertachlorodibenzodioxins	ng/kg	0.034	0.529	0.691		0.034		27	40	
		Total Pentachiorodibenzodioxins	ng/kg	0.042	0.959	0.776		0.042		21	40	UK
		I otal Hexachlorodibenzodioxins	ng/kg	0.22	5.54	1.68		0.22		107	40	EXCEEDS
		Total Heptachlorodibenzodioxins	ng/kg	0.33	58.8	14.9		0.33		119	40	EXCEEDS
		Total PCDDs	ng/kg		182	73.7		0.00		85	40	EXCEEDS
		Total Tetrachlorodibenzofurans	ng/kg	0.062	1.18	2.55		0.062		73	40	EXCEEDS
		Total Pentachlorodibenzofurans	ng/kg	0.060	4.59	4.13		0.060		11	40	ОК
		Total Hexachlorodibenzofurans	ng/kg	0.12	1.96	3.87		0.12		66	40	EXCEEDS
		Total Heptachlorodibenzofurans	ng/kg	0.13	8.67	2.24		0.13		118	40	EXCEEDS
		Total PCDFs	ng/kg		27.8	20.2		0.00		32	40	ОК

Notes: (1) "RPD" indicates Relative Percent Difference. (2) Concentrations reported below the RDL are presented as the RDL.

Table 2: Soil Analytical Results - Metals

Durham York Energy Center The Regional Municipality of Durham Project No. 2000603.8000

Davameters	Soil Standards	UPWIND					DYEC			DOWNWIND				
Farameters	Soli Stanuarus	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	19-Aug-20	25-Aug-15	17-Aug-16	23-Aug-17	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	19-Aug-20
Metals														
Antimony	1.3	<0.8	<0.8	<0.8	<0.8	<1	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<1
Arsenic	18	2	2	3	3	3	2	3	3	3	3	3	3	3
Barium	220	87	76	100	94	97	54	81	97	68	59	74	67	83
Beryllium	2.5	0.5	0.6	0.6	0.6	<1	0.5	0.6	0.6	<0.5	0.5	0.6	<0.5	<1
Boron	36	6	7	9	6	5	5	7	5	5	7	8	5	7
Cadmium	1.2	<0.5	<0.5	<0.5	<0.5	<0.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.4
Chromium, Total	70	18	20	23	21	23	16	20	22	14	15	18	16	18
Chromium, Hexavalent	0.66	<0.2	<0.2	<0.2	<0.2	0.22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.33
Cobalt	21	6.8	7.1	7.7	7.9	7	4.5	5.6	6.6	4.8	4.9	5.6	4.9	5
Copper	92	15	12	15	16	15	9	14	17	11	9	11	10	12
Lead	120	10	9	10	11	11	10	13	15	13	12	14	15	16
Mercury	0.27	<0.10	<0.10	<0.10	<0.10	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.1
Methyl Mercury (ng/g)	-	<1.3	<0.4	<0.4	<0.4	0.20	0.75	<0.4	<0.4	<1.3	<0.4	<0.4	<0.4	0.22
Molybdenum	2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1
Nickel	82	16	13	15	17	16	9	12	14	11	9	10	9	11
Phosphorus	-	729	815	891	691	760	911	973	813	609	668	705	592	700
Selenium	1.5	<0.8	<0.8	<0.8	<0.8	<1	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<1
Silver	0.5	<0.4	<0.4	<0.4	<0.4	<0.2	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.2
Thallium	1	<0.4	<0.4	<0.4	<0.4	<1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<1
Tin	-	<1	<1	<1	<1	<5	1	2	1	<1	<1	<1	<1	<5
Vanadium	86	27	29	33	32	29	23	27	31	24	26	28	25	29
Zinc	290	63	58	67	69	79	54	70	78	51	49	60	53	63

Notes: 1. Soil Standard as per Table 1 of the Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011.)

2. '-' denotes Soil Standard criteria not established.

3. BOLD and shaded indicate an exceedance of the Soil Standards

4. Units are in $\mu g/g$ unless otherwise noted.

Table 3: Soil Analytical Results - Polycyclic Aromatic Hydrocarbons

Durham York Energy Center The Regional Municipality of Durham Project No. 2000603.8000

		UPWIND				DYEC			DOWNWIND						
Parameters	Soil Standards	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	19-Aug-20	25-Aug-15	17-Aug-16	23-Aug-17	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	10/18/2017 (Re-sample)	19-Aug-20
Polycyclic Aromatic Hydrocarbons (
Fluorene	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05
Anthracene	0.16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.12	-	<0.05
Benzo(a)pyrene	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	0.05	<0.05	0.61	0.28	0.24
Benzo(a)fluorene	-	<0.05	<0.05	<0.05	<0.05	0.0257	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	0.402
Benzo(b)fluorene	-	<0.05	<0.05	<0.05	<0.05	0.0159	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	0.371

Notes: 1. Soil Standard as per Table 1 of the Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011.)

2. '-' denotes Soil Standard criteria not established.

3. BOLD and shaded indicate an exceedance of the Soil Standards

Units are in μg/g unless otherwise noted.

Table 4: Soil Analytical Results - Dioxins & Furans

Durham York Energy Center The Regional Municipality of Durham Project No. 2000603.8000

Davamotovc	Unite	Coil Standards			UPWIND				DYEC				DOWNWIND		
Parameters	Units	Soli Standards	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	19-Aug-20	25-Aug-15	17-Aug-16	23-Aug-17	22-Aug-13	25-Aug-15	17-Aug-16	23-Aug-17	19-Aug-20
Dioxins & Furans															
2,3,7,8-Tetra CDD	ng/kg	-	<0.5	0.2	<0.1	<0.1	<0.034	<0.2	<0.1	<0.8	<0.4	<0.1	<0.1	<0.3	0.137
1,2,3,7,8-Penta CDD	ng/kg	-	<0.6	0.5	<0.1	<0.2	0.086	0.3	<0.1	<0.6	<0.6	<0.2	<0.1	0.4	0.238
1,2,3,4,7,8-Hexa CDD	ng/kg	-	<0.6	0.6	<0.1	0.3	<0.22	0.4	1.8	<1	<0.5	0.2	<0.1	<0.4	0.34
1,2,3,6,7,8-Hexa CDD	ng/kg	-	<0.6	0.5	<0.1	0.3	0.27	<0.3	2	<1	<0.5	0.6	<0.1	0.6	0.82
1,2,3,7,8,9-Hexa CDD	ng/kg	-	<0.5	0.6	<0.1	0.2	0.23	0.9	2.2	<1	0.5	0.5	<0.1	1	1.01
1,2,3,4,6,7,8-Hepta CDD	ng/kg	-	8.2	7.9	4.8	6.2	16	12	36.3	12	17	11	8.1	12.6	19.4
Octa CDD	ng/kg	-	57	60	31.5	43.2	116	95	303	82	118	86	74.7	103	112
2,3,7,8-Tetra CDF	ng/kg	-	<0.4	0.3	<0.1	<0.1	0.091	<0.2	<0.1	<0.3	<0.3	0.2	<0.1	<0.3	0.349
1,2,3,7,8-Penta CDF	ng/kg	-	<0.4	0.4	<0.1	<0.2	0.100	<0.2	<0.1	<1	<0.8	0.2	<0.1	<0.4	0.285
2,3,4,7,8-Penta CDF	ng/kg	-	<0.4	0.5	<0.1	0.2	0.358	0.2	<0.1	<1	<0.6	0.3	<0.1	<0.4	0.597
1,2,3,4,7,8-Hexa CDF	ng/kg	-	<0.6	0.6	1.7	0.4	0.350	0.5	<0.1	<0.9	<0.4	0.6	1.6	0.8	0.41
1,2,3,6,7,8-Hexa CDF	ng/kg	-	<0.6	0.3	<0.1	0.2	0.170	0.3	<0.1	<0.8	<0.4	0.4	<0.1	0.4	0.57
2,3,4,6,7,8-Hexa CDF	ng/kg	-	<0.6	0.4	2.3	<0.2	<0.12	0.4	<0.1	<0.9	0.7	0.3	1.4	0.5	<0.12
1,2,3,7,8,9-Hexa CDF	ng/kg	-	<0.8	0.4	<0.1	<0.2	0.230	<0.3	<0.1	<1	<0.5	<0.2	<0.1	<0.4	0.23
1,2,3,4,6,7,8-Hepta CDF	ng/kg	-	2.1	2.2	1.2	1.7	3.04	2.7	7.8	1.3	4.9	2.6	7.9	3.2	5.32
1,2,3,4,7,8,9-Hepta CDF	ng/kg	-	<1	<0.3	<0.1	<0.4	0.29	0.3	<0.1	<0.9	<0.6	<0.2	<0.1	0.4	0.41
Octa CDF	ng/kg	-	3	6	6.7	4.6	11.4	9	32	7.5	9	8	9	6.1	14.9
Total Tetrachlorodibenzodioxins	ng/kg	-	1.3	0.7	<0.1	0.5	0.529	0.3	<0.1	<0.8	1.4	0.4	<0.1	1.5	0.822
Total Pentachlorodibenzodioxins	ng/kg	-	<0.6	2.5	<0.1	1	0.959	2.3	8.1	<0.6	2.3	1.8	<0.1	2.6	2.75
Total Hexachlorodibenzodioxins	ng/kg	-	3.6	3.7	<0.2	2.3	5.54	3.3	22.5	<1	4.3	3.2	<0.2	4.7	9.96
Total Heptachlorodibenzodioxins	ng/kg	-	17.7	10.2	13.4	14.5	58.8	15	57.9	20	31.1	12.7	28.6	25.7	40.5
Total PCDDs	ng/kg	-	80	76.8	44.9	61.5	182	116	392	103	158	104	103	138	166
Total Tetrachlorodibenzofurans	ng/kg	-	3.1	2	<0.1	2.6	1.18	3.8	10.1	7.4	4.7	2.1	1.2	3.7	4.20
Total Pentachlorodibenzofurans	ng/kg	-	1.3	2.3	4.3	1.1	4.59	3.3	6.2	<1	3.3	2.5	<0.1	2.7	7.04
Total Hexachlorodibenzofurans	ng/kg	-	2.4	1.8	103	2.5	1.96	1.2	173	3.3	6.5	1.3	2.9	5.3	8.17
Total Heptachlorodibenzofurans	ng/kg	-	5	3.3	56.9	4.1	8.67	4.9	36.4	4.1	12.3	4.8	15.1	8.1	14.0
Total PCDFs	ng/kg	-	14	15.5	171	14.9	27.8	21.7	258	14.8	36	19.1	28.3	25.9	48.3
2,3,7,8-Tetra CDD (TEF 1.0)	TEQ	-	0.25	0.195	0.05	0.05	0.017	0.1	0.05	0.4	0.2	0.05	0.05	0.15	0.137
1,2,3,7,8-Penta CDD (TEF 1.0)	TEQ	-	0.3	0.47	0.05	0.1	0.086	0.262	0.05	0.3	0.3	0.1	0.05	0.422	0.238
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ	-	0.03	0.0628	0.005	0.0261	0.011	0.0372	0.184	0.065	0.025	0.0203	0.005	0.02	0.0341
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ	-	0.03	0.0525	0.005	0.0285	0.027	0.015	0.201	0.065	0.025	0.0605	0.005	0.0635	0.0816
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ	-	0.025	0.0646	0.005	0.0217	0.023	0.0871	0.22	0.07	0.0544	0.0535	0.005	0.105	0.101
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ	-	0.0819	0.0788	0.0475	0.0616	0.16	0.12	0.363	0.121	0.17	0.109	0.0807	0.126	0.194
Octa CDD (TEF 0.0003)	TEQ	-	0.0172	0.0179	0.00944	0.0129	0.0348	0.0285	0.091	0.0246	0.0355	0.0259	0.0224	0.031	0.0336
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ	-	0.02	0.0265	0.005	0.005	0.0091	0.01	0.005	0.015	0.015	0.0224	0.005	0.015	0.0349
1,2,3,7,8-Penta CDF (TEF 0.03)	TEQ	-	0.006	0.012	0.0015	0.003	0.003	0.003	0.0015	0.0165	0.012	0.006	0.0015	0.006	0.00855
2,3,4,7,8-Penta CDF (TEF 0.3)	TEQ	-	0.06	0.15	0.015	0.0638	0.1074	0.06	0.015	0.15	0.09	0.09	0.015	0.06	0.1791
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ	-	0.03	0.0623	0.171	0.0367	0.035	0.0499	0.005	0.045	0.02	0.0576	0.159	0.075	0.0409
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ	-	0.03	0.0302	0.005	0.0203	0.017	0.03	0.005	0.04	0.02	0.0369	0.005	0.0422	0.0565
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ	-	0.03	0.0372	0.233	0.01	0.023	0.0427	0.005	0.045	0.072	0.0286	0.136	0.0495	0.023
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ	-	0.04	0.0377	0.005	0.01	0.006	0.015	0.005	0.065	0.025	0.01	0.005	0.02	0.006
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ	-	0.021	0.0219	0.012	0.0173	0.0304	0.027	0.0782	0.0125	0.049	0.0261	0.0785	0.0321	0.0532
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ	-	0.005	0.0015	0.0005	0.002	0.00287	0.00266	0.0005	0.0045	0.003	0.001	0.0005	0.00417	0.00407
Octa CDF (TEF 0.0003)	TEQ	· ·	0.00081	0.0018	0.00202	0.00138	0.00342	0.00256	0.00961	0.00225	0.00284	0.00252	0.00271	0.00184	0.00447
Total PCDDs and PCDFs (TEQ)	TEQ ng/kg	7	0.977	1.32	0.622	0.47	0.596	0.9	1.29	1.44	1.12	0.7	0.626	1.22	1.23

Notes: 1. Soil Standard as per Table 1 of the Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOECC, April 15, 2011.)

2. '-' denotes Soil Standard criteria not established.

FIGURES

Map Document. L:\2000603\6. Deliverables\Phase 8000 - DYEC\Figures\Working Files\2000603_DYEC_F01 apri

APPENDIX A

Carlos Pena

From:	Dunn, Philip (MECP) <philip.dunn@ontario.ca></philip.dunn@ontario.ca>
Sent:	Monday, August 31, 2020 6:37 PM
То:	Andrew Evans
Cc:	Gioseph Anello; Lyndsay Waller; Dugas, Celeste (MECP); Butchart, Jeff (MECP); Martin,
	Paul (MECP); O'Leary, Emilee (MECP)
Subject:	Durham York Energy Centre - Fenceline Soil Sampling and Revised Soil Testing Plan

Hi Andrew,

As I explained last week we've reviewed the revised soil sampling plan and agree that the soil sampling at the former fenceline ambient station is no longer required. As indicated in Section 2.4 of the previous Soil Testing Plan and Section 3.2 of the attached revised plan the ambient air monitoring program and soil testing are linked. With the removal of the fenceline ambient air monitoring station in 2018 soil sampling at the former fenceline station is no longer required.

In Section 4.3 of the Ambient Air Quality Monitoring Plan the purpose of the fenceline ambient air monitoring station (located inside the property line of the DYEC) was to monitor low level fugitive emissions (particulate and metals) for a minimum of one year after construction is complete. The location of the station was not considered representative of background conditions or within the area of interpreted maximum emissions deposition.

Any questions please give me a call,

Take care, Phil

Phil Dunn Senior Environmental Officer Ministry of Environment, Conservation and Parks York Durham District (905)424-2808 cel. Email: <u>philip.dunn@ontario.ca</u>

We want to hear from you. How was my service? You can provide feedback at 1-888-745-8888.

From: Melodee Smart <<u>Melodee.Smart@Durham.ca</u>>

Sent: July 17, 2020 5:09 PM

To: Dugas, Celeste (MECP) < <u>Celeste.Dugas@ontario.ca</u>>

Cc: Gioseph Anello <<u>Gioseph.Anello@Durham.ca</u>>; 'Laura McDowell' <<u>Laura.McDowell@york.ca</u>>; Trevisan, Lisa (MECP) < <u>Lisa.Trevisan@ontario.ca</u>>; Malcolmson, Heather (MECP) <<u>Heather.Malcolmson@ontario.ca</u>>; O'Neill, Kathleen (MECP) <<u>Kathleen.Oneill@ontario.ca</u>>; Dunn, Philip (MECP) <<u>Philip.Dunn@ontario.ca</u>>; Butchart, Jeff (MECP) <<u>ieff.butchart@ontario.ca</u>>; Martin, Paul (MECP) <<u>Paul.D.Martin@ontario.ca</u>>; O'Leary, Emilee (MECP) <<u>Emilee.OLeary@ontario.ca</u>>; Battarino, Gavin (MECP) <<u>Gavin.Battarino@ontario.ca</u>>; Matthew Neild (<u>mneild@covanta.com</u>) <<u>mneild@covanta.com</u>>; 'Amanda Huxter (<u>AHuxter@covanta.com</u>)' <<u>AHuxter@covanta.com</u>>; <u>Ron.Gordon@york.ca</u>; 'Seth Dittman (<u>Seth.Dittman@york.ca</u>)' <<u>Seth.Dittman@york.ca</u>>; Farid, Muneeb <<u>Muneeb.Farid@york.ca</u>>; Angela Porteous <<u>Angela.Porteous@durham.ca</u>>; Andrew Evans <<u>Andrew.Evans@durham.ca</u>>; Lyndsay Waller <<u>Lyndsay.Waller@Durham.ca</u>>; Danielle Luciano <<u>Danielle.Luciano@Durham.ca</u>>

Subject: Durham York Energy Centre: Revised Soil Testing Plan

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Good afternoon Ms. Dugas -

On behalf of Gioseph Anello, M.Eng., P.Eng., PMP, Director, Waste Management Services, The Regional Municipality of Durham, and on behalf of Laura McDowell, P.Eng., Director, Environmental Promotion and Protection, The Regional Municipality of York, please find attached, to your attention, correspondence and related attachments regarding 'Durham York Energy Centre, Revised Soil Testing Plan'.

Thank you,

Melodee Smart | Administrative Assistant

The Regional Municipality of Durham | Works Department – Commissioner's Office 605 Rossland Road East, Level 5, Whitby, Ontario L1N 6A3 905-668-7711 or 1-800-372-1102 extension 3560 | 905.668.2051 <u>Melodee.Smart@durham.ca | durham.ca</u>

THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have been waived. If you are not the intended recipient, you are hereby notified that any review, re-transmission, dissemination, distribution, copying, conversion to hard copy, taking of action in reliance on or other use of this communication is strictly prohibited. If you are not the intended recipient and have received this message in error, please notify me by return e-mail and delete or destroy all copies of this message.

From:	Dunn, Philip (MECP)
To:	Andrew Evans
Cc:	<u>Gioseph Anello; Lyndsay Waller; Dugas, Celeste (MECP); Butchart, Jeff (MECP); Martin, Paul (MECP); O"Leary, Emilee (MECP)</u>
Subject:	Durham York Energy Centre - Fenceline Soil Sampling and Revised Soil Testing Plan
Date:	Monday, August 31, 2020 6:37:17 PM

Hi Andrew,

As I explained last week we've reviewed the revised soil sampling plan and agree that the soil sampling at the former fenceline ambient station is no longer required. As indicated in Section 2.4 of the previous Soil Testing Plan and Section 3.2 of the attached revised plan the ambient air monitoring program and soil testing are linked. With the removal of the fenceline ambient air monitoring station in 2018 soil sampling at the former fenceline station is no longer required.

In Section 4.3 of the Ambient Air Quality Monitoring Plan the purpose of the fenceline ambient air monitoring station (located inside the property line of the DYEC) was to monitor low level fugitive emissions (particulate and metals) for a minimum of one year after construction is complete. The location of the station was not considered representative of background conditions or within the area of interpreted maximum emissions deposition.

Any questions please give me a call,

Take care, Phil

Phil Dunn Senior Environmental Officer Ministry of Environment, Conservation and Parks York Durham District (905)424-2808 cel. Email: <u>philip.dunn@ontario.ca</u>

We want to hear from you. How was my service? You can provide feedback at 1-888-745-8888.

From: Melodee Smart <<u>Melodee.Smart@Durham.ca</u>>

Sent: July 17, 2020 5:09 PM

To: Dugas, Celeste (MECP) <<u>Celeste.Dugas@ontario.ca</u>>

Cc: Gioseph Anello <<u>Gioseph.Anello@Durham.ca</u>>; 'Laura McDowell' <<u>Laura.McDowell@york.ca</u>>; Trevisan, Lisa (MECP) <<u>Lisa.Trevisan@ontario.ca</u>>; Malcolmson, Heather (MECP) <<u>Heather.Malcolmson@ontario.ca</u>>; O'Neill, Kathleen (MECP) <<u>Kathleen.Oneill@ontario.ca</u>>; Dunn, Philip (MECP) <<u>Philip.Dunn@ontario.ca</u>>; Butchart, Jeff (MECP) <<u>jeff.butchart@ontario.ca</u>>; Martin, Paul (MECP) <<u>Paul.D.Martin@ontario.ca</u>>; O'Leary, Emilee (MECP) <<u>Emilee.OLeary@ontario.ca</u>>; Battarino, Gavin (MECP) <<u>Gavin.Battarino@ontario.ca</u>>; Matthew Neild (<u>mneild@covanta.com</u>) <<u>mneild@covanta.com</u>>; 'Amanda Huxter (<u>AHuxter@covanta.com</u>)' <<u>AHuxter@covanta.com</u>>; Ron.Gordon@york.ca; 'Seth Dittman (<u>Seth.Dittman@york.ca</u>)' <<u>Seth.Dittman@york.ca</u>>; Farid, Muneeb <<u>Muneeb.Farid@york.ca</u>>; Angela Porteous <<u>Angela.Porteous@durham.ca</u>>; Andrew Evans <<u>Andrew.Evans@durham.ca</u>>; Lyndsay Waller <<u>Lyndsay.Waller@Durham.ca</u>>; Danielle Luciano <<u>Danielle.Luciano@Durham.ca</u>>

Subject: Durham York Energy Centre: Revised Soil Testing Plan

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Good afternoon Ms. Dugas -

On behalf of Gioseph Anello, M.Eng., P.Eng., PMP, Director, Waste Management Services, The Regional Municipality of Durham, and on behalf of Laura McDowell, P.Eng., Director, Environmental Promotion and Protection, The Regional Municipality of York, please find attached, to your attention, correspondence and related attachments regarding 'Durham York Energy Centre, Revised Soil Testing Plan'.

Thank you,

Melodee Smart | Administrative Assistant

The Regional Municipality of Durham | Works Department – Commissioner's Office

605 Rossland Road East, Level 5, Whitby, Ontario L1N 6A3

905-668-7711 or 1-800-372-1102 extension 3560 | 905.668.2051

Melodee.Smart@durham.ca | durham.ca

THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have been waived. If you are not the intended recipient, you are hereby notified that any review, retransmission, dissemination, distribution, copying, conversion to hard copy, taking of action in reliance on or other use of this communication is strictly prohibited. If you are not the intended recipient and have received this message in error, please notify me by return e-mail and delete or destroy all copies of this message.

APPENDIX B

PHOTOGRAPH 1: VIEW OF THE UPWIND SOIL SAMPLING SITE, FACING SOUTHWEST.

PHOTOGRAPH 2: VIEW OF THE DOWNWIND SOIL SAMPLING SITE, FACING SOUTHEAST.

NAJES: PHOTOGRAPHIC LOG	FIGURE NUMBER P	ROJECT NUMBER
2020 SOIL TESTING REPOR	T APPROX. SCALE	DATE REVISED
REGIONAL MUNICIPALITY OF DU DURHAM YORK ENERGY CENT	RHAM NTS RE	09/16/2020

FILE LOCATION: L1200060316. Deliverables/Phase 8000 - DYEC\Appendices\Appendix B - Photographic Log\[2000603-8000_Photographic Log.xisx]B-1

DATE PLOTTED: October 2, 2020

APPENDIX C

Certificate of Analysis

Environment Testing

Client:	RWDI Air Inc
	600 Southgate Drive
	Guelph, ON
	N1G 4P6
Attention:	Mr. Timothy Boc
Invoice to: PO#:	RWDI Air Inc.

Report Number: Date Submitted: Date Reported: Project: COC #: Temperature (C): Custody Seal: 1937015 2020-08-19 2020-09-16 2000603-8000 210561 7

Page 1 of 7

Dear Timothy Boc:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revision 1: This is an amendment and supersedes all other copies of this report issued on 2020-08-22. Boron results were added to this report as per client request on 2020-09-16.

Hongyuan Deng 2020.09.16 11:03:33 -04'00'

Hongyuan Deng, Inorganics Technician

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated

Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accrteditation. The scope is available at http://www.cala.ca/scopes/2602.pdf

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Certificate of Analysis

Environment Testing

Client:	RWDI Air Inc
	600 Southgate Drive
	Guelph, ON
Attention: PO#:	N1G 4P6 Mr. Timothy Boc
Invoice to:	RWDI Air Inc.

Report Number: 1937015 Date Submitted: Date Reported: Project: COC #: 210561

2020-08-19 2020-09-16 2000603-8000

Exceedence Summary

Sample I.D.	Analyte	Result	Units	Criteria

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

🛟 eurofins

Certificate of Analysis

Environment Testing

RWDI Air Inc
600 Southgate Drive
Guelph, ON
N1G 4P6
Mr. Timothy Boc
RWDI Air Inc.

Report Number: Date Submitted: Date Reported: Project: COC #: 1937015 2020-08-19 2020-09-16 2000603-8000 210561

Guideline = O.Reg 153-T1-All Other Soils							
<u>Metals</u>			San	nple Matrix	Soil153	Soil153	Soil153
			San	nple Date	2020-08-18	2020-08-18	2020-08-18
Analyte	Upwind	Downwind	Soil-DUP				
Analyte	Batch NO			Suidenne			
Antimony	388203	1	ug/g	STD 1.3	<1	<1	<1
Arsenic	388203	1	ug/g	STD 18	3	3	3
Barium	388203	1	ug/g	STD 220	97	83	103
Beryllium	388203	1	ug/g	STD 2.5	<1	<1	<1
Boron (Hot Water Soluble)	388236	0.5	ug/g		<0.5	0.6	<0.5
Boron (total)	388203	5	ug/g	STD 36	5	7	6
Cadmium	388203	0.4	ug/g	STD 1.2	<0.4	<0.4	<0.4
Chromium Total	388203	1	ug/g	STD 70	23	18	26
Chromium VI	388241	0.20	ug/g	STD 0.66	0.22		
	388332	0.20	ug/g	STD 0.66		0.33	<0.20
Cobalt	388203	1	ug/g	STD 21	7	5	8
Copper	388203	1	ug/g	STD 92	15	12	16
Lead	388203	1	ug/g	STD 120	11	16	12
Mercury	388203	0.1	ug/g	STD 0.27	<0.1	<0.1	<0.1
Molybdenum	388203	1	ug/g	STD 2	<1	<1	<1
Nickel	388203	1	ug/g	STD 82	16	11	17
Selenium	388203	1	ug/g	STD 1.5	<1	<1	<1
Silver	388203	0.2	ug/g	STD 0.5	<0.2	<0.2	<0.2
Thallium	388203	1	ug/g	STD 1	<1	<1	<1
Tin	388203	5	ug/g		<5	<5	<5
Vanadium	388203	2	ug/g	STD 86	29	29	31
Zinc	388203	2	ug/g	STD 290	79	63	72

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

🔅 eurofins

Certificate of Analysis

Environment Testing

Client:	RWDI Air Inc
	600 Southgate Drive
	Guelph, ON
	N1G 4P6
Attention:	Mr. Timothy Boc
PO#:	
Invoice to:	RWDI Air Inc.

Report Number: Date Submitted: Date Reported: Project: COC #: 1937015 2020-08-19 2020-09-16 2000603-8000 210561

Guideline = O.Reg 153-T1-All Other Soils							
PAH	Sar	nple Matrix	Soil153	Soil153	Soil153		
			Sar	nple Date	2020-08-18	2020-08-18	2020-08-18
Analyta	Detah Na	MDI	Sar	nple I.D.	Upwind	Downwind	Soil-DUP
Analyte	Batch No	MRL	Units	Guideline			L
1+2-methylnaphthalene	208523	0.05	ug/g		<0.05	<0.05	<0.05
Anthracene	388247	0.05	ug/g	STD 0.16	<0.05	<0.05	<0.05
Benz[a]anthracene	388247	0.05	ug/g	STD 0.36	<0.05	0.23	<0.05
Benzo[a]pyrene	388247	0.05	ug/g	STD 0.3	<0.05	0.24	<0.05
Benzo[b]fluoranthene	388247	0.05	ug/g	STD 0.47	<0.05	0.21	<0.05
Fluorene	388247	0.05	ug/g	STD 0.12	<0.05	<0.05	<0.05
Subcontract			Lab Sar Sar Sar	I.D. nple Matrix nple Type nple Date	1511716 Soil153 2020-08-18	1511717 Soil153 2020-08-18	1511718 Soil153 2020-08-18

Analyte	Batch No	MRL	Sam Sam Units C	npling Time nple I.D. Guideline	Upwind	Downwind	Soil-DUP
Methyl Mercury	389171	0.00005	ug/g		0.00020	0.00022	0.00017

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Certificate of Analysis

Environment Testing

Client:	RWDI Air Inc
	600 Southgate Drive
	Guelph, ON
	N1G 4P6
Attention:	Mr. Timothy Boc
PO#:	
Invoice to:	RWDI Air Inc.

Report Number: Date Submitted: Date Reported: Project: COC #: 1937015 2020-08-19 2020-09-16 2000603-8000 210561

Guideline = O.Reg 153-T1-All Other Soils								
Subcontract-Inorg	Li S S	ab I.D. ample Matrix ample Type	1511716 Soil153	1511717 Soil153	1511718 Soil153			
			S	ample Date ampling Time	2020-08-18	2020-08-18	2020-08-18	
			S	ample I.D.	Upwind	Downwind	Soil-DUP	
Analyte	Batch No	MRL	Units	Guideline	-			
Total P	388360	10	ug/g		760	700	870	

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

🛟 eurofins

Certificate of Analysis

Environment Testing

Client:	RWDI Air Inc
	600 Southgate Drive
	Guelph, ON
Attention: PO#:	N1G 4P6 Mr. Timothy Boc
Invoice to:	RWDI Air Inc.

Report Number: Date Submitted: Date Reported: Project: COC #: 1937015 2020-08-19 2020-09-16 2000603-8000 210561

Quality Assurance Summary

Batch No	Analyte	Blank	QC % Rec	QC Limits	Spike % Rec	Spike Limits	Dup % RPD	Duplicate Limits
208523	1+2-methylnaphthalene							
388203	Silver	<0.2 ug/g	114	70-130	119	70-130	0	0-20
388203	Arsenic	<1 ug/g	100	70-130	108	70-130	5	0-20
388203	Boron (total)	<5 ug/g	104	70-130	112	70-130	0	0-20
388203	Barium	<1 ug/g	112	70-130	145	70-130	2	0-20
388203	Beryllium	<1 ug/g	104	70-130	116	70-130	0	0-20
388203	Cadmium	<0.4 ug/g	116	70-130	117	70-130	0	0-20
388203	Cobalt	<1 ug/g	109	70-130	109	70-130	2	0-20
388203	Chromium Total	<1 ug/g	112	70-130	155	70-130	3	0-20
388203	Copper	<1 ug/g	119	70-130	116	70-130	2	0-20
388203	Mercury	<0.1 ug/g	100	70-130	96	70-130	0	0-20
388203	Molybdenum	<1 ug/g	105	70-130	108	70-130	0	0-20
388203	Nickel	<1 ug/g	113	70-130	122	70-130	3	0-20
388203	Lead	<1 ug/g	121	70-130	116	70-130	1	0-20
388203	Antimony	<1 ug/g	76	70-130	109	70-130	0	0-20
388203	Selenium	<1 ug/g	112	70-130	102	70-130	0	0-20
388203	Tin	<5 ug/g	87	70-130	1	70-130	0	0-20
388203	Thallium	<1 ug/g	121	70-130	118	70-130	0	0-20
388203	Vanadium	<2 ug/g	106	70-130	132	70-130	3	0-20
388203	Zinc	<2 ug/g	122	70-130	118	70-130	3	0-20
388236	Boron (Hot Water Soluble)	<0.5 ug/g	91	70-130	92	75-125	0	0-30
388241	Chromium VI	<0.20 ug/g	119	80-120	113	70-130	0	0-35
388247	Anthracene	<0.05 ug/g	87	50-140	68	50-140	0	0-40
388247	Benz[a]anthracene	<0.05 ug/g	75	50-140	66	50-140	0	0-40
388247	Benzo[a]pyrene	<0.05 ug/g	87	50-140	61	50-140	0	0-40
388247	Benzo[b]fluoranthene	<0.05 ug/g	84	50-140	40	50-140	0	0-40
388247	Fluorene	<0.05 ug/g	77	50-140	61	50-140	0	0-40
388332	Chromium VI	<0.20 ug/g	110	80-120	95	70-130	0	0-35
388360	Total P	<1.0 ug/g	89	80-120	89		23	
389171	Methyl Mercury	<0.00005						

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

🛟 eurofins

Certificate of Analysis

Environment Testing

Client:	RWDI Air Inc
	600 Southgate Drive
	Guelph, ON
Attention: PO#:	N1G 4P6 Mr. Timothy Boc
Invoice to:	RWDI Air Inc.

Report Number: Date Submitted: Date Reported: Project: COC #: 1937015 2020-08-19 2020-09-16 2000603-8000 210561

Test Summary

Batch No	Analyte	Instrument	Prep aration Date	Analysis Date	Analyst	Method
208523	1+2-methylnaphthalene	GC-MS	2020-08-26	2020-08-26	C_M	P 8270
388203	Silver	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Arsenic	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Boron (total)	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Barium	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Beryllium	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Cadmium	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Cobalt	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Chromium Total	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Copper	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Mercury	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Molybdenum	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Nickel	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Lead	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Antimony	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Selenium	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Tin	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Thallium	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Vanadium	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388203	Zinc	ICAPQ-MS	2020-08-22	2020-08-22	H_D	EPA 200.8
388236	Boron (Hot Water Soluble)	iCAP OES	2020-08-24	2020-08-24	Z_S	MOECC E3470
388241	Chromium VI	FAA	2020-08-24	2020-08-24	Z_S	M US EPA 3060A
388247	Anthracene	GC-MS	2020-08-24	2020-08-26	C_M	P 8270
388247	Benz[a]anthracene	GC-MS	2020-08-24	2020-08-26	C_M	P 8270
388247	Benzo[a]pyrene	GC-MS	2020-08-24	2020-08-26	C_M	P 8270
388247	Benzo[b]fluoranthene	GC-MS	2020-08-24	2020-08-26	C_M	P 8270
388247	Fluorene	GC-MS	2020-08-24	2020-08-26	C_M	P 8270
388332	Chromium VI	FAA	2020-08-25	2020-08-25	Z_S	M US EPA 3060A
388360	Total P		2020-08-24	2020-08-25	AET	SUBCONTRACT P-INORG
389171	Methyl Mercury		2020-09-01	2020-09-01	R_K	SUBCONTRACT-A

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

1435 Norjohn Court, Unit 1, Burlington ON, L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

		Certificate of Analysi	S
ALS Project Contact:	Breanne Dusureault	Client Nam	e: Eurofins
ALS Project ID:	25540	Client Addres	s: 1111 Flint Rd Unit 36
ALS WO#:	L2491669		North York, ON M3J 3C7
Date of Report	29-Sep-20		Canada
Date of Sample Receipt	20-Aug-20	Client Contac	et: Rebecca Koshy/Kelly Lancaster
		Client Project II	D: 1937015
COMMENTS	Panzalalfluorana and h	anzalbilluarana by CARR method 420 //	Pontion) loctono dilution
COMMENTS:	Benzolalnuorene and b	enzolbjindorene by CARB method 429 (i	R option)- isotope dilution
Sample and duplicate are o and other material.	utside method RPD conti	rol limits. Inspection of the sample show it t	o be non-homogenous, containing sticks
		Certified by:	lig
		Steve Kennedy	
		Technical Supervis	sor

Results in this certificate relate only to the samples as submitted to the laboratory.

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

			ALS Life Sciences	;		
		Samj	ole Analysis Summary R	Report		
Sample Name	Method Blank	1511716	Duplicate	1511717	1511718	Laboratory Control Sample
ALS Sample ID	WG3407255-1	L2491669-1	WG3407255-4	L2491669-2	L2491669-3	WG3407255-2
Sample Size	20.20	16.27	16.33	16.40	16.24	1
Sample units	g	g	g	g	g	QC
Moisture Content	n/a	19.1%	19.1%	18.1%	18.9%	n/a
Matrix	QC	Soil	QC	Soil	Soil	QC
Sampling Date	n/a	19-Aug-20	n/a	19-Aug-20	19-Aug-20	n/a
Extraction Date	23-Sep-20	23-Sep-20	23-Sep-20	23-Sep-20	23-Sep-20	23-Sep-20
Target Analytes	ng/g	ng/g	ng/g	ng/g	ng/g	% Rec
Benzo(a)fluorene	<0.099	U 25.7	M 13.0 M	402 M	8.35 M	
Benzo(b)fluorene	<0.099	U 15.9	5.91	371	4.20	
Benzo(a)Anthracene						102.3
Extraction Standards	% Rec	% Rec	% Rec	% Rec	% Rec	% Rec
	20.4	75.7	67.9	73.0	71.3	64.1

						ALS	Life	Sciences	S			
	Laboratory Method Blank Analysis Report											
Sample Name ALS Sample ID Analysis Method Analysis Type	Method B WG340725 PAH by CA blank	i lank 55-1 IRB 429						Sampling Date Extraction Date	n/a 23-Sep-20			
Sample Matrix Sample Size Percent Moisture Split Ratio	QC 20.20 n/a 1	g						Workgroup	WG3407255	Approved: <i>T.Patterson</i> e-signature 29-Sep-2020		
Run Information			Run 1									
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column			200928/ 9/28/20 1 1 ng/g MSD-5 HP5MS	408.D i20 17:24 mL USO179454	н							
Target Analytes		ng spiked	Re [.] Time	t. Concentr	ation ng/g	Flags						
Benzo(a)fluorene Benzo(b)fluorene			NotFnd NotFnd		<0.099 <0.099	U U						
Extraction Standar	ds				% Rec		Limits					
Fluoranthene D10		100	11.41		73.4		50-150					
L	J	Indicates	that this	compound v	vas not d	etected ab	oove the MD	۶L.				

					ALS	Life	Sciences					
	Sample Analysis Report											
Sample Name ALS Sample ID Analysis Method Analysis Type	1511716 L2491669- PAH by CA sample	1 RB 429					Sampling Date Extraction Date	19-Aug-20 00:00 23-Sep-20				
Sample Matrix Sample Size Percent Moisture Split Ratio	Soil 16.27 19.1% 1	g					Workgroup	WG3407255	Approved: <i>T.Patterson</i> e-signature 29-Sep-2020			
Run Information			Run 1									
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column			200928A10.D 9/28/2020 18: 1 mL 1 ng/g MSD-5 HP5MS USO174	35 9454H								
Target Analytes		ng spiked	Ret. Conce Time	ntration ng/g	Flags							
Benzo(a)fluorene Benzo(b)fluorene			13.27 13.48	25.7 N 15.9	1							
Extraction Standar	ds			% Rec		Limits						
Fluoranthene D10		100	11.41	75.7		50-150						
N	n	Indicates	that a peak has	been manually	γ integrate	ed.						

	·				ALS	Life	Sciences		
					Sam	ple Ana	lysis Report		
Sample Name ALS Sample ID Analysis Method Analysis Type	Duplicate WG340725 PAH by CAI sample	5-4 RB 429					Sampling Date Extraction Date	n/a 23-Sep-20	
Sample Matrix Sample Size Percent Moisture Split Ratio	QC 16.33 19.1% 1	g					Workgroup	WG3407255	Approved: <i>T.Patterson</i> e-signature 29-Sep-2020
Run Information			Run 1						· · ·
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column			200928A11.D 9/28/2020 19: ⁻ 1 mL 1 ng/g MSD-5 HP5MS USO17	11 9454H					
Target Analytes		ng spiked	Ret. Conce Time	ntration ng/g	Flags				
Benzo(a)fluorene Benzo(b)fluorene			13.27 13.49	13.0 N 5.91	1				
Extraction Standar	ds			% Rec		Limits			
Fluoranthene D10		100	11.41	67.9		50-150			
N	1	Indicates t	that a peak has	been manually	y integrate	əd.			

					ALS	Life	Sciences	; 	
					Sam	ple Ana	lysis Report		
Sample Name ALS Sample ID Analysis Method Analysis Type	1511717 L2491669- PAH by CA sample	2 RB 429					Sampling Date Extraction Date	19-Aug-20 00:00 23-Sep-20	
Sample Matrix Sample Size Percent Moisture Split Ratio	Soil 16.40 18.1% 1	g					Workgroup	WG3407255	Approved: <i>T.Patterson</i> e-signature 29-Sep-2020
Run Information			Run 1						
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column			200928A09.E 9/28/2020 1 1 mL 10 mg/g MSD-5 HP5MS USO1	D 8: 00 179454H					
Target Analytes		ng spiked	Ret. Con Time	centration ng/g	Flags				
Benzo(a)fluorene Benzo(b)fluorene			13.27 13.48	402 M 371	1				
Extraction Standar	ds			% Rec		Limits			
Fluoranthene D10		100	11.41	73.0		50-150			
N	1	Indicates	that a peak h	as been manuall	y integrate	ed.			

	·				ALS	Life	Sciences		
					Sam	ple Ana	lysis Report		
Sample Name ALS Sample ID Analysis Method Analysis Type	1511718 L2491669-: PAH by CAI sample	3 RB 429					Sampling Date Extraction Date	19-Aug-20 00:00 23-Sep-20	
Sample Matrix Sample Size Percent Moisture Split Ratio	Soil 16.24 18.9% 1	g					Workgroup	WG3407255	Approved: <i>T.Patterson</i> e-signature 29-Sep-2020
Run Information			Run 1						
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column			200928A12.D 9/28/2020 19: 1 mL 1 ng/g MSD-5 HP5MS US017	47 19454H					
Target Analytes		ng spiked	Ret. Conce Time	entration ng/g	Flags				
Benzo(a)fluorene Benzo(b)fluorene			13.27 13.49	8.35 M 4.20	1				
Extraction Standar	ds			% Rec		Limits			
Fluoranthene D10		100	11.41	71.3		50-150			
N	1	Indicates	that a peak has	been manually	/ integrate	∍d.			

	ALS Life Sciences											
Laboratory Control Sample Analysis Report												
Sample Name ALS Sample ID Analysis Method Analysis Type	Labora WG340 PAH by LCS	tory Control 9 7255-2 CARB 429	6 mple				Sampling Date Extraction Date	n/a 23-Sep-20				
Sample Matrix Sample Size Percent Moisture Split Ratio	QC 1 n/a 1	QC					Workgroup	WG3407255	Approved: <i>T.Patterson</i> e-signature 29-Sep-2020			
Run Information			Run 1									
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument Column			200928A06.D 9/28/202016 1 mL 1 % Rec MSD-5 HP5MS US017	:13 79454H								
Target Analytes		ng spiked	Ret. Time	% Rec	Flags	Limits						
Benzo(a)Anthracene		100	16.00	102.3		50-150						
Extraction Standar	ds			% Rec		Limits						
Fluoranthene D10		100	11.41	64.1		50-150						

Eurofins Environment Testing Canada Inc (Ottawa) ATTN: Rebecca Koshy/Kelly Lancaster 8 - 146 Colonnade Road Ottawa ON K2E 7Y1 Date Received:20 - AUG - 20Report Date:29-SEP-2013:16 (MT)Version:FINAL REV. 2

Client Phone: 613 - 727 - 5692

Certificate of Analysis

Lab Work Order #: L2491669

Project P.O. #:OTT-2008-10Job Reference:1937015C of C Numbers:Legal Site Desc:

Comments: ADDITIONAL 17-SEP-20 12:11

kh ktaters

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2491669-1 1511716							
Sampled By: CLIENT on 19-AUG-20							
Physical Tosts							
% Moisture	10.1		0.10	0/_	26 4110 20	27 4110 20	B5202800
Dioxins and Furans	19.1		0.10	70	20-AUG-20	27-400-20	R3202009
2,3,7,8-TCDD	<0.034	ΓU]	0.034	pa/a	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8-PeCDD	0.086	M,J,R	0.042	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,7,8-HxCDD	<0.22	[U]	0.22	pq/q	26-AUG-20	02-SEP-20	R5204698
1,2,3,6,7,8-HxCDD	0.27	M,J,R	0.20	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8,9-HxCDD	0.23	M,J,R	0.21	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,6,7,8-HpCDD	16.0		0.33	pg/g	26-AUG-20	02-SEP-20	R5204698
OCDD	116		1.1	pg/g	26-AUG-20	02-SEP-20	R5204698
Total-TCDD	0.529		0.034	pg/g	26-AUG-20	02-SEP-20	R5204698
Total TCDD # Homologues	3				26-AUG-20	02-SEP-20	R5204698
Total-PeCDD	0.959		0.042	pg/g	26-AUG-20	02-SEP-20	R5204698
Total PeCDD # Homologues	3				26-AUG-20	02-SEP-20	R5204698
Total-HxCDD	5.54		0.22	pg/g	26-AUG-20	02-SEP-20	R5204698
Total HxCDD # Homologues	2				26-AUG-20	02-SEP-20	R5204698
Total-HpCDD	58.8		0.33	pg/g	26-AUG-20	02-SEP-20	R5204698
Total HpCDD # Homologues	2				26-AUG-20	02-SEP-20	R5204698
2,3,7,8-TCDF	0.091	M,J,R	0.062	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8-PeCDF	0.100	J,R	0.060	pg/g	26-AUG-20	02-SEP-20	R5204698
2,3,4,7,8-PeCDF	0.358	M,J	0.053	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,7,8-HxCDF	0.350	M,J,R	0.083	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,6,7,8-HxCDF	0.170	[J]	0.078	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8,9-HxCDF	<0.12	[U]	0.12	pg/g	26-AUG-20	02-SEP-20	R5204698
2,3,4,6,7,8-HxCDF	0.230	J,R	0.087	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,6,7,8-HpCDF	3.04	[J]	0.080	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,7,8,9-HpCDF	0.29	M,J	0.13	pg/g	26-AUG-20	02-SEP-20	R5204698
OCDF	11.4	М	0.40	pg/g	26-AUG-20	02-SEP-20	R5204698
Total-TCDF	1.18		0.062	pg/g	26-AUG-20	02-SEP-20	R5204698
Total TCDF # Homologues	5				26-AUG-20	02-SEP-20	R5204698
Total-PeCDF	4.59		0.060	pg/g	26-AUG-20	02-SEP-20	R5204698
Total PeCDF # Homologues	8				26-AUG-20	02-SEP-20	R5204698
Total-HxCDF	1.96		0.12	pg/g	26-AUG-20	02-SEP-20	R5204698
Total HxCDF # Homologues	3				26-AUG-20	02-SEP-20	R5204698
Total-HpCDF	8.67		0.13	pg/g	26-AUG-20	02-SEP-20	R5204698
Total HpCDF # Homologues	5				26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,7,8-TCDD	74.0		25-164	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,7,8-PeCDD	64.0		25-181	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8-HxCDD	64.0		32-141	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,6,7,8-HxCDD	86.0		28-130	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDD	51.0		23-140	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-OCDD	21.0		17-157	%	26-AUG-20	02-SEP-20	R5204698

1937015

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2491669-1 1511716							
Sampled By: CLIENT on 19-AUG-20							
Matrix: SOIL							
Dioxins and Furans							
Surrogate: 13C12-2,3,7,8-TCDF	71.0		24-169	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,7,8-PeCDF	63.0		24-185	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,4,7,8-PeCDF	62.0		21-178	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8-HxCDF	68.0		26-152	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,6,7,8-HxCDF	98.0		26-123	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,4,6,7,8-HxCDF	80.0		29-147	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,7,8,9-HxCDF	72.0		28-136	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF	64.0		28-143	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF	54.0		26-138	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup)	75.0		35-197	%	26-AUG-20	02-SEP-20	R5204698
Toxic Equivalency							
Lower Bound PCDD/F TEQ (WHO 2005)	0.356			pg/g	26-AUG-20	02-SEP-20	R5204698
Mid Point PCDD/F TEQ (WHO 2005)	0.596			pg/g	26-AUG-20	02-SEP-20	R5204698
Upper Bound PCDD/F TEQ (WHO 2005)	0.630			pg/g	26-AUG-20	02-SEP-20	R5204698
L2491669-2 1511717							
Matrix: SOIL							
Physical Tests							
% Moisture	18 1		0 10	%	26-AUG-20	27-AUG-20	R5202809
Dioxins and Furans	10.1		0.10	,0	20710020	21710020	110202000
2,3,7,8-TCDD	0.137	M,J	0.032	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8-PeCDD	0.238	M,J	0.026	pa/a	26-AUG-20	02-SEP-20	R5204698
1.2.3.4.7.8-HxCDD	0.34	M,J	0.16	pa/a	26-AUG-20	02-SEP-20	R5204698
1.2.3.6.7.8-HxCDD	0.82	M,J	0.14	pa/a	26-AUG-20	02-SEP-20	R5204698
1.2.3.7.8.9-HxCDD	1 01	IJ	0.15	pa/a	26-AUG-20	02-SEP-20	R5204698
1.2.3.4.6.7.8-HpCDD	19.4		0.38	pa/a	26-AUG-20	02-SEP-20	R5204698
OCDD	112		13	pa/a	26-AUG-20	02-SEP-20	R5204698
Total-TCDD	0.822		0.032	na/a	26-AUG-20	02-SEP-20	R5204698
Total TCDD # Homologues	3		0.002	P9'9	26-AUG-20	02-SEP-20	R5204698
Total-PeCDD	2 75		0 026	pa/a	26-AUG-20	02-SEP-20	R5204698
Total PeCDD # Homologues	7		0.020	P3'3	26-AUG-20	02-SEP-20	R5204698
Total-HxCDD	9.96		0 16	na/a	26-AUG-20	02-SEP-20	R5204698
Total HxCDD # Homologues	6		0.10	P9'9	26-AUG-20	02-SEP-20	R5204698
Total-HnCDD	40.5		0 38	na/a	26-AUG-20	02-SEP-20	R5204698
Total HpCDD # Homologues	-0.0		0.00	P9/9	26-AUG-20	02-0E1-20	R5204608
2 3 7 8 TCDE	0.340	r II	0.004	nala	26-AUG-20	02-SEP-20	P5204090
	0.345	[0]	0.094	pg/g	20-AUG 20	02-021-20	DE204090
2 3 4 7 8-PeCDE	0.205	[0]	0.042	pg/g	20-AUG-20	02-3LF-20	R5204090
	0.597	[0]	0.030	pg/g	20-AUG-20	02-3LF-20	R5204090
	0.41	[0]	0.12	pg/g	20-400-20	02-057-20	R0204098
	0.57	[J] M I I	0.11	pg/g	20-AUG-20	02-357-20	R5204698
	<0.12	IVI,U	0.12	pg/g	20-AUG-20	02-SEP-20	R5204698
	0.23	J,R	0.13	p8/8	20-AUG-20	UZ-3EP-20	K0204698

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 2491669-2 1511717							
Sampled By: CLIENT on 19-AUG-20							
Matrix: SOIL							
Dioxins and Furans							
1,2,3,4,6,7,8-HpCDF	5.32	М	0.14	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,7,8,9-HpCDF	0.41	[J]	0.23	pg/g	26-AUG-20	02-SEP-20	R5204698
OCDF	14.9	М	0.59	pg/g	26-AUG-20	02-SEP-20	R5204698
Total-TCDF	4.20		0.094	pg/g	26-AUG-20	02-SEP-20	R5204698
Total TCDF # Homologues	14				26-AUG-20	02-SEP-20	R5204698
Total-PeCDF	7.04		0.042	pg/g	26-AUG-20	02-SEP-20	R5204698
Total PeCDF # Homologues	6				26-AUG-20	02-SEP-20	R5204698
Total-HxCDF	8.17		0.13	pg/g	26-AUG-20	02-SEP-20	R5204698
Total HxCDF # Homologues	4				26-AUG-20	02-SEP-20	R5204698
Total-HpCDF	14.0		0.23	pg/g	26-AUG-20	02-SEP-20	R5204698
Total HpCDF # Homologues	3				26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,7,8-TCDD	85.0		25-164	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,7,8-PeCDD	67.0		25-181	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8-HxCDD	58.0		32-141	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,6,7,8-HxCDD	78.0		28-130	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDD	43.0		23-140	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-OCDD	17.0	М	17-157	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,7,8-TCDF	73.0		24-169	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,7,8-PeCDF	69.0		24-185	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,4,7,8-PeCDF	65.0		21-178	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8-HxCDF	67.0		26-152	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,6,7,8-HxCDF	86.0		26-123	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-2,3,4,6,7,8-HxCDF	71.0		29-147	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,7,8,9-HxCDF	59.0		28-136	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF	58.0		28-143	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF	44.0		26-138	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup)	81.0		35-197	%	26-AUG-20	02-SEP-20	R5204698
Toxic Equivalency							
Lower Bound PCDD/F TEQ (WHO 2005)	1.20			pg/g	26-AUG-20	02-SEP-20	R5204698
Mid Point PCDD/F TEQ (WHO 2005)	1.23			pg/g	26-AUG-20	02-SEP-20	R5204698
Upper Bound PCDD/F TEQ (WHO 2005)	1.24			pg/g	26-AUG-20	02-SEP-20	R5204698
L2491669-3 1511718							
Matrix: SOII							
Physical Tests							
% Moisture	18.9		0 10	%	26-AUG-20	27-AUG-20	R5202809
Dioxins and Furans			0.10				
2,3,7,8-TCDD	<0.035	[U]	0.035	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8-PeCDD	0.071	M,J	0.037	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,4,7,8-HxCDD	0.17	M,J,R	0.15	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,6,7,8-HxCDD	0.28	M,J,R	0.14	pg/g	26-AUG-20	02-SEP-20	R5204698
1,2,3,7,8,9-HxCDD	<0.14	M,U	0.14	pg/g	26-AUG-20	02-SEP-20	R5204698

Sample Details	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2491669-3	1511718							
Sampled By:	CLIENT on 19-AUG-20							
Matrix:	SOIL							
		7.50	Р	0.44		00 4110 00		B5004000
1,2,3,4,0,7,	в-преде	7.50	ĸ	0.44	pg/g	26-AUG-20	02-SEP-20	R5204698
		55.7		1.1	pg/g	26-AUG-20	02-SEP-20	R5204698
Total-TCDL		0.691		0.035	pg/g	26-AUG-20	02-SEP-20	R5204698
	# Homologues	6		0.007		26-AUG-20	02-SEP-20	R5204698
Total-PeCD		0.776		0.037	pg/g	26-AUG-20	02-SEP-20	R5204698
Total PeCD	D # Homologues	3		0.45	nala	26-AUG-20	02-SEP-20	R5204698
	D # Hemeleques	1.08		0.15	pg/g	20-AUG-20	02-3EP-20	R5204698
		14.0		0.44	nala	20-AUG-20	02-SEP-20	R5204698
		14.9		0.44	pg/g	20-AUG-20	02-3EF-20	R5204096
		0.100	IP	0.059	nala	20-AUG-20	02-367-20	R5204090
2,3,7,0-10L		0.190	J,R	0.058	pg/g	20-AUG-20	02-SEP-20	R5204698
1,2,3,7,0-Ft		0.104	M I	0.040	pg/g	20-AUG-20	02-3EF-20	R5204090
2,3,4,7,0-Ft		0.294	M I	0.040	pg/g	20-AUG-20	02-3EF-20	R5204698
1,2,3,4,7,0-		0.201	м,5 г п	0.062	pg/g	20-AUG-20	02-3EF-20	R5204090
1,2,3,0,7,0-		0.100	[5]	0.059	pg/g	20-AUG-20	02-3EF-20	R5204090
234678		<0.096	[O] M I	0.090	pg/g	20-AUG-20	02-3LF-20	R5204090
2,3,4,0,7,0-		0.241	м,5 г п	0.005	pg/g	20-AUG-20	02-3EF-20	R5204090
123478		2.24	[J] M H	0.005	pg/g	20-AUG-20	02-SEP-20	R5204090
0CDE		<0.15	M.O	0.15	pg/g	20-AUG-20	02-3LF-20	R5204090
		7.50	IVI	0.47	pg/g	20-AUG-20	02-3LF-20	R5204090
Total TCDF	# Homologues	2.55		0.056	P9/9	20-AUG-20	02-SEP-20	R5204090
Total-PeCD	F	10		0.049	nala	26 AUG 20	02-021-20	R5204090
	F # Homologues	4.13		0.040	P9/9	20-AUG-20	02-SEP-20	R5204090
Total-HyCD	F	2.97		0.006	na/a	26-AUG-20	02-SEP-20	R5204090
Total HxCD	F # Homologues	3.07		0.090	P9/9	26-AUG-20	02-0E1-20	R5204090
	F	2.24		0 15	na/a	26-AUG-20	02-SEP-20	R5204090
Total HpCD	F # Homologues	1		0.10	P9/9	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-2 3 7 8-TCDD	90.0		25-164	%	26-AUG-20	02-0E1-20	R5204698
Surrogate:	13C12-1 2 3 7 8-PeCDD	73.0		25-104	%	26-AUG-20	02-0EF-20	R5204698
Surrogate:	13C12-1 2 3 4 7 8-HxCDD	70.0		32-1/1	%	26-AUG-20	02-SEP-20	R5204608
Surrogate:	13C12-1 2 3 6 7 8-HxCDD	96.0		28-130	%	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-1 2 3 4 6 7 8-HpCDD	51.0		23-140	%	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-0CDD	19.0		17-157	%	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-2 3 7 8-TCDF	84.0		24-169	%	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-1 2 3 7 8-PeCDF	74 0		24-185	%	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-2.3.4.7.8-PeCDF	72.0		21-178	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1.2.3.4.7.8-HxCDF		79.0		26-152	%	26-AUG-20	02-SFP-20	R5204698
Surrogate:	13C12-1.2.3.6.7.8-HxCDF	102.0		26-123	%	26-AUG-20	02-SFP-20	R5204698
Surrogate:	13C12-2.3.4.6.7.8-HxCDF	87.0		29-147	%	26-AUG-20	02-SEP-20	R5204698
Surrogate:	13C12-1.2.3.7.8.9-HxCDF	78.0		28-136	%	26-AUG-20	02-SFP-20	R5204698
301	, , , , ,				,,,			

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2491669-3 1511718							
Sampled By: CLIENT on 19-AUG-20							
Dioxins and Furans							
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF	67.0		28-143	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF	53.0		26-138	%	26-AUG-20	02-SEP-20	R5204698
Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup)	89.0		35-197	%	26-AUG-20	02-SEP-20	R5204698
Toxic Equivalency							
Lower Bound PCDD/F TEQ (WHO 2005)	0.272			pg/g	26-AUG-20	02-SEP-20	R5204698
Mid Point PCDD/F TEQ (WHO 2005)	0.441			pg/g	26-AUG-20	02-SEP-20	R5204698
Upper Bound PCDD/F TEQ (WHO 2005)	0.471			pg/g	26-AUG-20	02-SEP-20	R5204698

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Total-HxCDF	А	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Duplicate	1,2,3,4,6,7,8-HpCDD	G	L2491669-1, -2, -3
Comments:	Sample and DUP do not match do not match for all target,	sample contai	ns foreign objects (rocks, roots, leaves).
Duplicate	OCDD	G	L2491669-1, -2, -3
Comments:	Sample and DUP do not match do not match for all target,	sample conta	ins foreign objects (rocks, roots, leaves).
Duplicate	Total-HpCDD	G	L2491669-1, -2, -3
Comments:	Sample and DUP do not match do not match for all target,	sample conta	ins foreign objects (rocks, roots, leaves).
Duplicate	Total-HxCDD	G	L2491669-1, -2, -3
Comments:	Sample and DUP do not match do not match for all target,	sample conta	ins foreign objects (rocks, roots, leaves).
Duplicate	Total-HxCDF	G	L2491669-1, -2, -3
Comments:	Sample and DUP do not match do not match for all target,	sample conta	ins foreign objects (rocks, roots, leaves).
Duplicate	Total-TCDF	G	L2491669-1, -2, -3
Comments:	Sample and DUP do not match do not match for all target,	sample conta	ins foreign objects (rocks, roots, leaves).
Method Blank	1,2,3,6,7,8-HxCDF	M,J	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	2,3,4,6,7,8-HxCDF	M,J	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,4,6,7,8-HpCDD	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,4,6,7,8-HpCDF	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,4,7,8,9-HpCDF	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,4,7,8-HxCDF	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,7,8,9-HxCDF	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,7,8-PeCDF	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	OCDD	M,J,R	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,4,7,8-HxCDD	M,U	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,7,8,9-HxCDD	M,U	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	OCDF	[J]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,6,7,8-HxCDD	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	1,2,3,7,8-PeCDD	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	2,3,4,7,8-PeCDF	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	2,3,7,8-TCDD	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	2,3,7,8-TCDF	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	Total-HpCDD	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	Total-HpCDF	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	Total-HxCDD	[U]	L2491669-1, -2, -3
Comments:	There were low levels of select targets detected in the met	hod blank that	were within the reference method control limits
Method Blank	Total-PeCDD	[U]	L2491669-1, -2, -3

Reference Information

	Parameter Qualifier Applies to Sample Number(s)			
	There were low levels of select targets detected in the method blank that were within the reference method control limits			
Commen	nts:			
Method Blank	Total-PeCDF [U] L2491669-1, -2, -3			
Commen	nts: There were low levels of select targets detected in the method blank that were within the reference method control limits			
Method Blank	Total-TCDD [U] L2491669-1, -2, -3			
Commen	nts: There were low levels of select targets detected in the method blank that were within the reference method control limits			
Method Blank	Total-TCDF [U] L2491669-1, -2, -3			
Commen	nts: There were low levels of select targets detected in the method blank that were within the reference method control limits			
Sample Parame	eter Qualifier key listed:			
Qualifier	Description			
A	Method Blank exceeds ALS DQO. Refer to narrative comments for further information.			
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.			
J,R	The analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.			
Μ	A peak has been manually integrated.			
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.			
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.			
M,U	A peak has been manually integrated, and the analyte was not detected above the EDL.			
R	The ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.			
[J]	The analyte was detected below the calibrated range but above the EDL.			
[U]	The analyte was not detected above the EDL.			

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
DX-1613B-HRMS-BU	Soil	Dioxins and Furans HR 1613B	USEPA 1613B	

Samples are extracted by Soxhlet. The extracts are prepared using column chromatography, reduced in volume and analyzed by isotope-dilution GC/HRMS

MOISTURE-BU Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

This method is used to determine the percent moisture in a sample. Samples are homogenized, moisture is removed by heating at 105°C until constant mass is achieved. The residues are measured gravimetrically and the difference in weight between the wet sample and the dried sample is used to determine the moisture content. This percent moisture can be used, in conjunction with analytical results, to report data on a dry weight basis.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
BU	ALS ENVIRONMENTAL - BURLINGTON, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Report Date: 29-SEP-20

Page 1 of 4

Client: Eurofins Environment Testing Canada Inc (Ottawa)

Workorder: L2491669

8 - 146 Colonnade Road

Ottawa ON K2E 7Y1

Contact: Rebecca Koshy/Kelly Lancaster

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
DX-1613B-HRMS-BU	Soil							
Batch R5204698								
WG3389586-4 DUP		L2491669-1	-0.044				50	
		< 0.034	<0.044	RPD-NA	pg/g	N/A	50	02-SEP-20
1,2,3,7,8-PeCDD		0.000	<0.061	RPD-NA	pg/g	N/A	50	02-SEP-20
1,2,3,4,7,8-HXCDD		< 0.22	<0.24	RPD-NA	pg/g	N/A	50	02-SEP-20
1,2,3,6,7,8-HXCDD		0.27	0.29		pg/g	7.1	50	02-SEP-20
1,2,3,7,8,9-HXCDD		0.23	<0.23	RPD-NA	pg/g	N/A	50	02-SEP-20
1,2,3,4,6,7,8-HpCDD		16.0	9.16	G	pg/g	54	50	02-SEP-20
OCDD		116	65.5	G	pg/g	56	50	02-SEP-20
2,3,7,8-TCDF		0.091	<0.096	RPD-NA	pg/g	N/A	50	02-SEP-20
1,2,3,7,8-PeCDF		0.100	0.215	J	pg/g	0.115	0.12	02-SEP-20
2,3,4,7,8-PeCDF		0.358	0.289		pg/g	21	50	02-SEP-20
1,2,3,4,7,8-HxCDF		0.350	0.28		pg/g	22	50	02-SEP-20
1,2,3,6,7,8-HxCDF		0.170	<0.17	RPD-NA	pg/g	N/A	50	02-SEP-20
2,3,4,6,7,8-HxCDF		0.230	0.32		pg/g	31	50	02-SEP-20
1,2,3,7,8,9-HxCDF		<0.12	<0.22	RPD-NA	pg/g	N/A	50	02-SEP-20
1,2,3,4,6,7,8-HpCDF		3.04	2.66		pg/g	13	50	02-SEP-20
1,2,3,4,7,8,9-HpCDF		0.29	0.19		pg/g	41	50	02-SEP-20
OCDF		11.4	7.57		pg/g	40	50	02-SEP-20
Total-TCDD		0.529	0.438		pg/g	19	50	02-SEP-20
Total-PeCDD		0.959	0.803		pg/g	18	50	02-SEP-20
Total-HxCDD		5.54	0.57	G	pg/g	163	50	02-SEP-20
Total-HpCDD		58.8	23.2	G	pg/g	87	50	02-SEP-20
Total-TCDF		1.18	2.43	G	pg/g	69	50	02-SEP-20
Total-PeCDF		4.59	3.53		pg/g	26	50	02-SEP-20
Total-HxCDF		1.96	3.35	G	pg/g	52	50	02-SEP-20
Total-HpCDF		8.67	5.93		pg/g	38	50	02-SEP-20
COMMENTS: Sampl	e and DUP do no	ot match do not n	natch for all	target, sample co	ontains foreign ob	jects (rocks, roo	ts, leaves).	
WG3389586-2 LCS					24			
2,3,7,8-1CDD			94.0		%		67-158	31-AUG-20
1,2,3,7,8-PeCDD			99.0		%		70-142	31-AUG-20
1,2,3,4,7,8-HxCDD			91.0		%		70-164	31-AUG-20
1,2,3,6,7,8-HxCDD			90.0		%		76-134	31-AUG-20
1,2,3,7,8,9-HxCDD			99.0		%		64-162	31-AUG-20
1,2,3,4,6,7,8-HpCDD			93.0		%		70-140	31-AUG-20

Quality Control Report

Report Date: 29-SEP-20

Page 2 of 4

Client: Eurofins Environment Testing Canada Inc (Ottawa) 8 - 146 Colonnade Road

Workorder: L2491669

Ottawa ON K2E 7Y1

Contact: Rebecca Koshy/Kelly Lancaster

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
DX-1613B-HRMS-BU	Soil							
Batch R5204698								
WG3389586-2 LCS					0/			
			94.0		%		78-144	31-AUG-20
2,3,7,8-1CDF			101.0		%		75-158	31-AUG-20
1,2,3,7,8-PeCDF			107.0		%		80-134	31-AUG-20
2,3,4,7,8-PeCDF			99.0		%		68-160	31-AUG-20
1,2,3,4,7,8-HxCDF			101.0		%		72-134	31-AUG-20
1,2,3,6,7,8-HxCDF			103.0		%		84-130	31-AUG-20
2,3,4,6,7,8-HxCDF			103.0		%		70-156	31-AUG-20
1,2,3,7,8,9-HxCDF			112.0		%		78-130	31-AUG-20
1,2,3,4,6,7,8-HpCDF			105.0		%		82-122	31-AUG-20
1,2,3,4,7,8,9-HpCDF			105.0		%		78-138	31-AUG-20
OCDF			113.0		%		63-170	31-AUG-20
WG3389586-1 MB 2,3,7,8-TCDD			<0.019	[U]	pg/g		0.019	31-AUG-20
1,2,3,7,8-PeCDD			<0.017	[U]	pg/g		0.017	31-AUG-20
1,2,3,4,7,8-HxCDD			<0.029	M,U	pg/g		0.029	31-AUG-20
1,2,3,6,7,8-HxCDD			<0.026	[U]	pg/g		0.026	31-AUG-20
1,2,3,7,8,9-HxCDD			<0.027	M,U	pg/g		0.027	31-AUG-20
1,2,3,4,6,7,8-HpCDD			0.053	M,J,R	pg/g		0.029	31-AUG-20
OCDD			0.180	M,J,R	pg/g		0.03	31-AUG-20
2,3,7,8-TCDF			<0.018	[U]	pg/g		0.018	31-AUG-20
1,2,3,7,8-PeCDF			0.018	M,J,R	pg/g		0.014	31-AUG-20
2,3,4,7,8-PeCDF			<0.013	[U]	pg/g		0.013	31-AUG-20
1,2,3,4,7,8-HxCDF			0.016	M,J,R	pg/g		0.012	31-AUG-20
1,2,3,6,7,8-HxCDF			0.017	M,J	pg/g		0.012	31-AUG-20
2,3,4,6,7,8-HxCDF			0.025	M,J	pg/g		0.012	31-AUG-20
1,2,3,7,8,9-HxCDF			0.030	M,J,R	pg/g		0.016	31-AUG-20
1,2,3,4,6,7,8-HpCDF			0.034	M,J,R	pg/g		0.014	31-AUG-20
1,2,3,4,7,8,9-HpCDF			0.029	M,J,R	pg/g		0.019	31-AUG-20
OCDF			0.201	[J]	pg/g		0.028	31-AUG-20
Total-TCDD			<0.019	[U]	pg/g		0.019	31-AUG-20
Total-PeCDD			<0.017	[U]	pg/g		0.017	31-AUG-20
Total-HxCDD			<0.029	[U]	pg/g		0.029	31-AUG-20
Total-HpCDD			<0.029	[U]	pg/g		0.029	31-AUG-20
Total-TCDF			<0.018	[U]	pg/g		0.018	31-AUG-20

Quality Control Report

Workorder: L2491669

Report Date: 29-SEP-20

Page 3 of 4

Client: Eurofins Environment Testing Canada Inc (Ottawa) 8 - 146 Colonnade Road

Ottawa ON K2E 7Y1

Contact: Rebecca Koshy/Kelly Lancaster

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
DX-1613B-HRMS-BU	Soil							
Batch R520469 WG3389586-1 MB	98							
Total-PeCDF			<0.014	[U]	pg/g		0.014	31-AUG-20
Total-HxCDF			0.043	А	pg/g		0.016	31-AUG-20
Total-HpCDF			<0.019	[U]	pg/g		0.019	31-AUG-20
Surrogate: 13C12-2,3	3,7,8-TCDD		86.0		%		25-164	31-AUG-20
Surrogate: 13C12-1,2	2,3,7,8-PeCDD		80.0		%		25-181	31-AUG-20
Surrogate: 13C12-1,2	2,3,4,7,8-HxCDD		82.0		%		32-141	31-AUG-20
Surrogate: 13C12-1,2	2,3,6,7,8-HxCDD		92.0		%		28-130	31-AUG-20
Surrogate: 13C12-1,2	2,3,4,6,7,8-HpCDD		76.0		%		23-140	31-AUG-20
Surrogate: 13C12-00	CDD		57.0		%		17-157	31-AUG-20
Surrogate: 13C12-2,3	3,7,8-TCDF		86.0		%		24-169	31-AUG-20
Surrogate: 13C12-1,2	2,3,7,8-PeCDF		80.0		%		24-185	31-AUG-20
Surrogate: 13C12-2,3	3,4,7,8-PeCDF		77.0		%		21-178	31-AUG-20
Surrogate: 13C12-1,2	2,3,4,7,8-HxCDF		77.0		%		26-152	31-AUG-20
Surrogate: 13C12-1,2	2,3,6,7,8-HxCDF		89.0		%		26-123	31-AUG-20
Surrogate: 13C12-2,3	3,4,6,7,8-HxCDF		85.0		%		29-147	31-AUG-20
Surrogate: 13C12-1,2	2,3,7,8,9-HxCDF		80.0		%		28-136	31-AUG-20
Surrogate: 13C12-1,2	2,3,4,6,7,8-HpCDF		81.0		%		28-143	31-AUG-20
Surrogate: 13C12-1,2	2,3,4,7,8,9-HpCDF		77.0		%		26-138	31-AUG-20
Surrogate: 37Cl4-2,3	,7,8-TCDD (Cleanup))	87.0		%		35-197	31-AUG-20

COMMENTS: There were low levels of select targets detected in the method blank that were within the reference method control limits

MOISTURE-BU

Soil

Batch	R5202809						
WG3389588 % Moisture	-3 DUP	L2491669-1 19.1	18.7	%	2	2.2 20	27-AUG-20
WG3389588 % Moisture	-2 LCS		95.2	%		90-11	0 27-AUG-20
WG3389588 % Moisture	-1 MB		<0.10	%		0.3	27-AUG-20

Workorder: L2491669

Report Date: 29-SEP-20

Client:	Eurofins Environment Testing Canada Inc (Ottawa)
	8 - 146 Colonnade Road
	Ottawa ON K2E 7Y1
Contact:	Rebecca Koshv/Kellv Lancaster

Legend:

Limit A	LS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified ReferenceMaterial
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD I	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier De	scription
А	Method Blank exceeds ALS DQO. Refer to narrative comments for further information.
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.
J	Duplicate results and limits are expressed in terms of absolute difference.
J,R	The analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
Μ	A peak has been manually integrated.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
M,U	A peak has been manually integrated, and the analyte was not detected above the EDL.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
[J]	The analyte was detected below the calibrated range but above the EDL.
[U]	The analyte was not detected above the EDL.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

Certificate of Analysis

ALS Project Contact: Breanne Dusureault ALS Project ID: ALS WO#: Date of Report 18-Sep-20 Date of Sample Receipt 20-Aug-20

25540 L2491669

Client Name: Client Address: Client Contact: Client Project ID:

Eurofins Ottawa 8 - 146 Colonnade Road Ottawa, ON K2E 7Y1 Canada Rebecca Koshy/Kelly Lancaster 1937015

COMMENTS:

PCDD/F by EPA 1613B via Isotope Dilution

Sample and DUP do not match do not match for all target, sample contains foreign objects (rocks, roots, leaves).

As per pages 28-29 of the MOECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" as ammended July 2011, the WHO 2005 TEFs are to be employed while applying half the concentration of the EDLs for non-detected congeners. Therefore the regulations are relative to the "Mid Point PCDD/F TEQ (WHO 2005)" as presented in this report.

Certified by:	P.A.	MJesel
	Ron McLeod, Ph.D. Technical Director	

Results in this certificate relate only to the samples as submitted to the laboratory.

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

ALS Life Sciences													
	Sam	ple Analysis Sum	mary Report										
Sample Name	1511716	Duplicate	1511717	1511718									
	12401660.1	WC2200506 4	12401660.2	12401660.2									
ALS Sample ID Sample Size	16.36	WG3389586-4 16 55	16.5	16 58									
Sample Size units	10.00	10.00	10.5	10.00 0									
Percent Moisture	19.14%	18.73%	18.14%	18.90%									
Sample Matrix	SOIL	QC	SOIL	SOIL									
Sampling Date	19-Aug-20	n/a	19-Aug-20	19-Aug-20									
Extraction Date	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20									
Target Analytes	pg/g	pg/g	pg/g	pg/g									
2,3,7,8-TCDD	< 0.034	<0.044	0.137	< 0.035									
1,2,3,7,8-PeCDD	<0.086	<0.061	0.238	0.0712									
1,2,3,4,7,8-HxCDD	<0.22	<0.24	0.341	<0.17									
1,2,3,6,7,8-HxCDD	< 0.27	<0.29	0.816	<0.28									
1,2,3,7,8,9-HXCDD	<0.23	<0.23	1.01	<0.14									
1,2,3,4,0,7,8-ПРСОО	116	9.10	19.4	< 7.5									
0000	110	05.5	112										
2,3,7,8-TCDF	<0.091	<0.096	0.349	<0.19									
1,2,3,7,8-PeCDF	< 0.10	0.215	0.285	0.104									
2,3,4,7,8-PeCDF	0.358	0.289	0.597	0.294									
1,2,3,4,7,8-HxCDF	< 0.35	<0.28	0.409	0.261									
2.3.4.6.7.8-HxCDF	<0.23	0.315	<0.23	0.241									
1,2,3,7,8,9-HxCDF	<0.12	<0.22	< 0.12	< 0.096									
1,2,3,4,6,7,8-HpCDF	3.04	2.66	5.32	2.24									
1,2,3,4,7,8,9-HpCDF	0.287	<0.19	0.407	<0.15									
OCDF	11.4	7.57	14.9	7.36									
Extraction Standards	% Rec	% Rec	% Rec	% Rec									
			25	00									
13C12-2,3,7,8-TCDD	74	87	85	90									
13C12-1,2,3,7,8-PECDD	64	81	59	73									
13C12-1,2,3,4,7,8-HxCDD	86	100	78	96									
13C12-1,2,3,4,6,7,8-HpCDD	51	69	43	51									
13C12-OCDD	21	35	17	19									
13C12-2,3,7,8-TCDF	71	82	73	84									
13C12-1,2,3,7,8-PeCDF	63	78	69	74									
13C12-2,3,4,7,8-PeCDF	62	77	65	72									
13C12-1,2,3,4,7,8-HxCDF	68	80	67	79									
13C12-1,2,3,6,7,8-HxCDF	98	108	86	102									
13C12-2,3,4,6,7,8-HxCDF	80	95	71	87									
13C12-1,2,3,7,8,9-HxCDF	72	90	59	78									
13C12-1,2,3,4,6,7,8-прСDF	54	81	58	57									
13012-1,2,3,4,7,0,5-1000	54	72	44	22									
Cleanup Standard													
37Cl4-2,3,7,8-1CDD (Cleanup)	/5	93	81	89									
Homologue Group Totals	pg/g	pg/g	pg/g	pg/g									
Total-TCDD	0.529	0.438	0.822	0.691									
Total-PeCDD	0.959	0.803	2.75	0.776									
	5.54	U.5/3 C C C	9.96	1.68									
Total Cl4 to Cl8 Dibenzo(n)dioxins	50.8 187	23.2	40.5	73.7									
Total-TCDF	1.18	2.43	4.20	2.55									
Total-PeCDF	4.59	3.53	7.04	4.13									
Total-HxCDF	1.96	3.35	8.17	3.87									
Total-HpCDF	8.67	5.93	14.0	2.24									
Total Cl4 to Cl8 Dibenzofurans	27.8	22.8	48.3	20.2									
Toxic Equivalency - (WHO 2005)													
Lower Bound PCDD/F TEQ (WHO 2005)	0.356	0.265	1.20	0.272									
Mid Point PCDD/F TEQ (WHO 2005)	0.596	0.424	1.23	0.441									
upper Bound PCDD/F TEQ (WHO 2005)	0.630	0.524	1.24	0.4/1									

	A	ALS Life Sci	ences	
	Qua	lity Control Sumn	nary Report	
Sample Name	Method Blank La	boratory Control		
		Sample		
ALC Comple ID	WC2280E86 1	WC2280E86 2		
Sample Size	17.00	1		
Sample size units	a	a		
Percent Moisture	n/a	n/a		
Sample Matrix	QC	QC		
Sampling Date	n/a	n/a		
Extraction Date	26-Aug-20	26-Aug-20		
Target Analytes	pg/g	% Rec		
2,3,7,8-TCDD	< 0.046	89		
1,2,3,7,8-PeCDD	< 0.033	94		
1,2,3,4,7,8-HxCDD	<0.078	90		
1,2,3,6,7,8-HxCDD	<0.070	89		
1,2,3,7,8,9-HxCDD	<0.071	93		
1,2,3,4,6,7,8-HpCDD	< 0.086	97		
OCDD	<0.34	91		
2,3,7,8-TCDF	<0.044	98		
1,2,3,7,8-PeCDF	<0.038	111		
2,3,4,7,8-PeCDF	< 0.031	99		
1,2,3,4,7,8-HxCDF	<0.029	104		
1,2,3,6,7,8-HxCDF	< 0.026	111		
2,3,4,6,7,8-HxCDF	< 0.051	104		
1,2,3,7,8,9-HxCDF	< 0.046	111		
1,2,3,4,6,7,8-HPCDF	< 0.10	110		
1,2,3,4,7,8,5-11pcD1	<0.003	103		
	(0.5)			
Extraction Standards	% Rec	% Rec		
13C12-2,3,7,8-TCDD	82	83		
13C12-1,2,3,7,8-PeCDD	74	74		
13C12-1,2,3,4,7,8-HxCDD	66	71		
13C12-1,2,3,6,7,8-HxCDD	101	102		
13C12-1,2,3,4,6,7,8-HPCDD	67	59		
13012-0000		25		
13C12-2,3,7,8-TCDF	78	81		
13C12-1,2,3,7,8-PeCDF	75	/1		
13C12-2,3,4,7,8-PeCDF	/3	69 77		
13C12-1,2,3,4,7,6-HXCDF	09	103		
13C12-2 3 4 6 7 8-HxCDF	83	86		
13C12-1.2.3.7.8.9-HxCDF	71	72		
13C12-1,2,3,4,6,7,8-HpCDF	75	73		
13C12-1,2,3,4,7,8,9-HpCDF	69	60		
Cleanup Standard				
37Cl4-2,3,7,8-TCDD (Cleanup)	80	77		
Homologue Group Totals	pg/g			
Total-TCDD	<0.046			
Total-PeCDD	< 0.033			
Total-HxCDD	<0.078			
Total-HpCDD	<0.086			
Total-TCDF	<0.044			
Total-PeCDF	<0.038			
Total-HxCDF	< 0.046			
	< 0.065			
ioxic Equivalency - (WHO 2005)				
Lower Bound PCDD/F TEQ (WHO 2005)	0.00			
Mid Point PCDD/F TEQ (WHO 2005)	0.0700			
opper Bound PCDD/F TEQ (WHO 2005)	0.134			

ALS Life Sciences													
						Sar	mple A	nalysis Report					
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	1511716 L2491669-1 EPA 1613B Sample SOIL							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	19-Aug-20 26-Aug-20 16.36 19.1% 1	g	Approved: N Ashtari e-signature 03-Sep-2020		
Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		Run 1 7-2009014 02-Sep-20 20 uL 1 pg/g HRMS-7 [05:26 05:26	0287836H	I								
Target Analytes	TEF (WHO 2005)	Ret. Time	Conc. pg/g	EDL pg/g F	lags	EMPC pg/g	LQL	Mid Point TEQ pg/g					
2,3,7,8-TCDD	1	NotFnd	<0.034	0.034	U		0.61	0.017					
1,2,3,7,8-PeCDD	1	32.20	<0.086	0.042	M,J,R	0.086	3.1	0.086					
1,2,3,4,7,8-HxCDD	0.1	NotFnd	<0.22	0.22	U		3.1	0.011					
1,2,3,6,7,8-HxCDD	0.1	34.32	< 0.27	0.20	M,J,R	0.27	3.1	0.027					
1,2,3,7,8,9-HXCDD	0.1	34.45	< 0.23	0.21	M,J,K	0.23	3.1	0.023					
1,2,3,4,0,7,6-HPCDD OCDD	0.0003	37.40	116	1.1			6.1	0.0348					
3666		5				0.05							
2,3,7,8-TCDF	0.1	26.98	< 0.091	0.062	M,J,R	0.091	0.61	0.0091					
1,2,3,7,8-PeCDF	0.03	31.24	< 0.10	0.060	J,R	0.10	3.1	0.003					
1.2.3.4.7.8-HxCDF	0.1	33.78	< 0.35	0.083	M.1.R	0.35	3.1	0.035					
1,2,3,6,7,8-HxCDF	0.1	33.85	0.170	0.078	,,,,,,, J	0.00	3.1	0.017					
2,3,4,6,7,8-HxCDF	0.1	34.17	<0.23	0.087	J,R	0.23	3.1	0.023					
1,2,3,7,8,9-HxCDF	0.1	34.60	<0.12	0.12	U	0.096	3.1	0.006					
1,2,3,4,6,7,8-HpCDF	0.01	35.38	3.04	0.080	J		3.1	0.0304					
1,2,3,4,7,8,9-HpCDF	0.01	36.16	0.287	0.13	M,J		3.1	0.00287					
OCDF	0.0003	37.49	11.4	0.40	M		0.1	0.00342					
Extraction Standards	pg		% Rec	Limits									
13C12-2,3,7,8-TCDD	2000	27.89	74	25-164									
13C12-1,2,3,7,8-PeCDD	2000	32.19	64	25-181									
13C12-1,2,3,4,7,8-HxCDD	2000	34.26	64 86	32-141 28-130									
13C12-1,2,3,4,6,7,8-HpCDD	2000	35.92	51	23-140									
13C12-0CDD	4000	37.40	21	17-157									
13C12-2.3.7.8-TCDF	2000	26.98	71	24-169									
13C12-1,2,3,7,8-PeCDF	2000	31.23	63	24-185									
13C12-2,3,4,7,8-PeCDF	2000	31.97	62	21-178									
13C12-1,2,3,4,7,8-HxCDF	2000	33.77	68	26-152									
13C12-1,2,3,6,7,8-HxCDF	2000	33.84	98	26-123									
13C12-1.2.3.7.8.9-HxCDF	2000	34.17	72	20-130									
13C12-1,2,3,4,6,7,8-HpCDF	2000	35.37	64	28-143									
13C12-1,2,3,4,7,8,9-HpCDF	2000	36.16	54	26-138									
Cleanup Standard	pg												
37Cl4-2,3,7,8-TCDD (Cleanup)	40	27.92	75	35-197									
			Conc.	EDL									
Homologue Group Totals		# peaks	pg/g	pg/g									
Total-TCDD		3.00	0 529	0.034			0.61						
Total-PeCDD		3.00	0.959	0.042			3.1						
Total-HxCDD		2.00	5.54	0.22			3.1						
Total-HpCDD		2.00	58.8	0.33			3.1						
Total-TCDF		5.00	1.18	0.062			0.61						
Total-PeCDF		8.00	4.59	0.060			3.1						
Total-HxCDF Total-HxCDF		5.00	1.96	0.12			3.1						
							-						
Toxic Equivalency - (WHO	2005)		pg/g										
Lower Bound PCDD/F TEQ	(WHO 2005)		0.356										
Mid Point PCDD/F TEQ (WH	10 2005) (WHO 2005)		0.596					0.596					
epper bound rebb/r TEQ			0.000										
EDL		Indicates t	he Estima	ted Detec	tion Limi	, based o	on the mea	sured background noise for th	is target in this sa	imple.			
TEF		Indicates t	he Toxic I	Equivalenc	y Factor	ly integra	tod	TEQ Indicates the	Toxic Equivalency	/			
M		Indicates t	hat this o	ompound	was not r	letected :	above the F	DI.					
0		indicates t		pound		cu d	uie l						
1		Indicates t	hat a targ	et analyte	e was det	ected bel	ow the cali	brated range.					
R		Indicates t	hat the io	n abundar	nce ratio	for this co	ompound d	id not meet the acceptance cr	iterion.				
LQL		Lower Qua	ntification	Limit, ba	sed on th	e lowest	calibration	level corrected for sample size	e, splits and diluti	ons.			
EMPC		Estimated	maximum	russible (concentra	acion – el	evaleu deti	ection minic due to interference	e or positive la crit				

	ALS Life Sciences													
						Sa	mple /	Analysis Report						
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Duplicate WG3389586-4 EPA 1613B Sample QC							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 26-Aug-20 16.55 g 18.7% 1		Approved: N Ashtari e-signature 03-Sep-2020			
Run Information		Run 1								I				
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		7-200901/ 02-Sep-20 20 uL 1 pg/g HRMS-7 E	A06) 06:08) 05:08	D287836F	I									
Target Analytes	TEF (WHO 2005)	Ret. Time	Conc. pg/g	EDL pg/g	Flags	EMPC pg/g	LQL	Mid Point TEQ pg/g						
2,3,7,8-TCDD	1	NotFnd	<0.044	0.044	U		0.60	0.022						
1,2,3,7,8-PeCDD	1	32.20	<0.061	0.061	M,U	0.060	3.0	0.0305						
1,2,3,4,7,8-HxCDD	0.1	34.28	<0.24	0.24	M,U	0.14	3.0	0.012						
1,2,3,6,7,8-HxCDD	0.1	34.34	<0.29	0.24	M,J,R	0.29	3.0	0.029						
1,2,3,7,8,9-HxCDD	0.1	34.45	<0.23	0.23	м,0	0.20	3.0	0.0115						
1,2,3,4,0,7,8-11000	0.0003	37.41	65.5	1.1			6.0	0.01965						
2,3,7,8-TCDF	0.1	NotFnd	< 0.096	0.096	U		0.60	0.0048						
2 3 4 7 8-PeCDF	0.03	31.24	0.213	0.031	м, м 1		3.0	0.00645						
1,2,3,4,7,8-HxCDF	0.1	33.77	<0.28	0.16	M.J.R	0.28	3.0	0.028						
1,2,3,6,7,8-HxCDF	0.1	33.85	<0.17	0.17	M,U	0.12	3.0	0.0085						
2,3,4,6,7,8-HxCDF	0.1	34.18	0.315	0.17	M,J		3.0	0.0315						
1,2,3,7,8,9-HxCDF	0.1	NotFnd	<0.22	0.22	U		3.0	0.011						
1,2,3,4,6,7,8-HpCDF	0.01	35.38	2.66	0.081	M,J	0.10	3.0	0.0266						
1,2,3,4,7,8,9-HPCDF OCDF	0.0003	36.18	<0.19 7.57	0.12	, к М	0.19	6.0	0.0019						
Extraction Standards	Pg		% Rec	Limits										
13C12-2,3,7,8-TCDD	2000	27.89	87	25-164										
13C12-1,2,3,7,8-PeCDD	2000	32.19	81	25-181										
13C12-1,2,3,4,7,8-HxCDD	2000	34.27	78	32-141										
13C12-1,2,3,6,7,8-HXCDD 13C12-1 2 3 4 6 7 8-HpCDD	2000	34.32	100	28-130										
13C12-0CDD	4000	37.40	35	17-157										
13C12-2 3 7 8-TCDE	2000	26.98	82	24-169										
13C12-1,2,3,7,8-PeCDF	2000	31.24	78	24-185										
13C12-2,3,4,7,8-PeCDF	2000	31.97	77	21-178										
13C12-1,2,3,4,7,8-HxCDF	2000	33.77	80	26-152										
13C12-1,2,3,6,7,8-HXCDF	2000	33.84	108	26-123										
13C12-1,2,3,7,8,9-HxCDF	2000	34.59	90	29-147										
13C12-1,2,3,4,6,7,8-HpCDF	2000	35.38	81	28-143										
13C12-1,2,3,4,7,8,9-HpCDF	2000	36.18	72	26-138										
Cleanup Standard	Pg													
37Cl4-2,3,7,8-TCDD (Cleanup)	40	27.92	93	35-197										
			Conc.	EDL										
Homologue Group Totals		# peaks	pg/g	pg/g										
Total-TCDD		2.00	0.438	0.044			0.60							
Total-PeCDD Total-HyCDD		2.00	0.803	0.061			3.0							
Total-HpCDD		2.00	23.2	0.24			3.0							
Total-TCDF		8.00	2.43	0.096			0.60							
Total-PeCDF		6.00	3.53	0.051			3.0							
Total-HxCDF		5.00	3.35	0.22			3.0							
Total-HpCDF		2.00	5.93	0.12			3.0							
Toxic Equivalency - (WHO	0 2005)		pg/g											
Lower Bound PCDD/F TEQ	(WHO 2005)		0.265											
Mid Point PCDD/F TEQ (WI Upper Bound PCDD/F TEQ	HO 2005) (WHO 2005)		0.424 0.524					0.424						
EDL	-	Indicates t	he Estima	ated Dete	ction Limi	t, based	on the mea	sured background noise for th	is target in this sample.					
TEF	-	Indicates t	he Toxic	Equivaler	icy Factor			TEQ Indicates the	Toxic Equivalency					
M	l J	Indicates t	nat a pea hat this c	ik has bee	was not	ily integra detected	ated. above the I	EDL.						
				,										
:]	Indicates t	hat a targ	get analyt	e was det	ected be	low the cali	brated range.						
F	ł	Indicates t	hat the io	on abunda	ince ratio	tor this c	ompound d	id not meet the acceptance ci	riterion.					
LQL	-	Lower Qua	ntification	n Limit, b	ased on th	ne lowest	calibration	level corrected for sample siz	e, splits and dilutions.					
EMPC	:	Estimated	Maximum	Possible	Concentr	ation – e	levated det	ection limit due to interference	e or positive id criterion failure					

ALS Life Sciences													
						Sai	mple A	nalysis Report					
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	1511717 L2491669-2 EPA 1613B Sample SOIL							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	19-Aug-20 26-Aug-20 16.5 18.1% 1	g	Approved: N Ashtari e-signature 03-Sep-2020		
Run Information		Run 1											
Filename		7-200901/	407										
Run Date		02-Sep-20	06:51										
Final Volume		20 uL											
Analysis Units		1											
Instrument - Column		HRMS-7 D	B5MSUS	0287836H									
Target Analytes	TEF (WHO 2005)	Ret. Time	Conc.	EDL pg/g F	lags	EMPC	LOL	Mid Point TEQ					
2 2 7 8-700	(27.05	0 127	0.022	м 1	-3/3		0 127					
1,2,3,7,8-PeCDD	1	32.23	0.238	0.026	M,J		3.0	0.238					
1,2,3,4,7,8-HxCDD	0.1	34.39	0.341	0.16	M,J		3.0	0.0341					
1,2,3,6,7,8-HxCDD	0.1	34.44	0.816	0.14	M,J		3.0	0.0816					
1,2,3,7,8,9-HXCDD	0.1	34.56	1.01	0.15	J		3.0	0.101					
1,2,3,4,0,7,8-11PCDD	0.0003	37.41	112	1.3			6.1	0.0336					
2 2 7 8 TOD	0.1	27.02	0.240	0.004	,		0.61	0.0340					
2,3,7,8-TCDF 1,2,3.7.8-PeCDF	0.03	27.02	0.285	0.094	J		3.0	0.00855					
2,3,4,7,8-PeCDF	0.3	32.00	0.597	0.036	j		3.0	0.1791					
1,2,3,4,7,8-HxCDF	0.1	33.84	0.409	0.12	J		3.0	0.0409					
1,2,3,6,7,8-HxCDF	0.1	33.91	0.565	0.11	J		3.0	0.0565					
2,3,4,6,7,8-HxCDF	0.1	34.28	<0.23	0.13	J,R M II	0.23	3.0	0.023					
1,2,3,4,6,7,8-HpCDF	0.01	35.39	5.32	0.12	M.,0	0.078	3.0	0.0532					
1,2,3,4,7,8,9-HpCDF	0.01	36.18	0.407	0.23	J		3.0	0.00407					
OCDF	0.0003	37.50	14.9	0.59	М		6.1	0.00447					
Extraction Standards	Pg		% Rec	Limits									
13C12-2,3,7,8-TCDD	2000	27.95	85	25-164									
13C12-1,2,3,7,8-PeCDD	2000	32.22	67	25-181									
13C12-1,2,3,4,7,8-HxCDD	2000	34.38	58	32-141									
13C12-1,2,3,6,7,8-HxCDD 13C12-1,2,3,4,6,7,8-HxCDD	2000	34.43	/8	28-130									
13C12-0CDD	4000	37.41	17	17-157	м								
13C12-2.3.7.8-TCDF	2000	27.01	73	24-169									
13C12-1,2,3,7,8-PeCDF	2000	31.25	69	24-185									
13C12-2,3,4,7,8-PeCDF	2000	31.99	65	21-178									
13C12-1,2,3,4,7,8-HxCDF 13C12-1 2 3 6 7 8-HxCDF	2000	33.83	67	26-152									
13C12-2,3,4,6,7,8-HxCDF	2000	34.28	71	28-136									
13C12-1,2,3,7,8,9-HxCDF	2000	34.65	59	29-147									
13C12-1,2,3,4,6,7,8-HpCDF	2000	35.38	58	28-143									
13C12-1,2,3,4,7,8,9-npCDF	2000	30.10	44	20-130									
Cleanup Standard	pg												
37Cl4-2,3,7,8-TCDD (Cleanup)	40	27.96	81	35-197									
			Conc.	EDL									
Homologue Group Totals		# peaks	pg/g	pg/g									
Total-TCDD		3.00	0.822	0.032			0.61						
Total-PeCDD		7.00	2.75	0.026			3.0						
Total-HxCDD		6.00	9.96	0.16			3.0						
I otal-HpCDD		2.00	40.5	0.38			3.0 0.61						
Total-PeCDF		6.00	7.04	0.042			3.0						
Total-HxCDF		4.00	8.17	0.13			3.0						
Total-HpCDF		3.00	14.0	0.23			3.0						
Toxic Equivalency - (WHC	2005)		pa/a										
Lower Bound BCDD /F TEO	(WHO 2005)		1 20										
Mid Point PCDD/F TEQ	(WHO 2005) HO 2005)		1.20					1.23					
Upper Bound PCDD/F TEQ	(WHO 2005)		1.24										
EDI		Indicator t	he Estima	tod Dotod	tion Limit	bacad	on the mea	aured background poice for thi	is target in this s	mala			
TEF		Indicates t	the Toxic	Equivalenc	y Factor	, Daseu (on the mea	TEQ Indicates the	Toxic Equivalenc	y			
Μ	1	Indicates t	hat a pea	k has been	n manual	ly integra	ated.						
L	J	Indicates t	hat this c	ompound v	was not o	letected	above the E	EDL.					
	1	Indicator +	hat a tar	iet analyto	was do+	ected be	ow the calil	brated range					
F	- L	Indicates t	hat the ic	n abundan	ice ratio	for this c	ompound d	id not meet the acceptance cri	iterion.				
								•					
LQI	-	Lower Qua	ntification	n Limit, bas	sed on th	e lowest	calibration	level corrected for sample size	e, splits and dilut	ions.			
EMPC		Estimated	maximum	i Possible (Joncentr	acion – el	evated dete	ection limit due to interference	or positive id cri	tenon randre			

	ALS Life Sciences													
						Sa	mple /	Analysis Repo	ort					
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	1511718 L2491669-3 EPA 1613B Sample SOIL							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	Į	19-Aug-20 26-Aug-20 16.58 18.9% 1	g	ſ		Approved: N Ashtari -e-signature 03-Sep-2020
Run Information		Run 1												
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		7-2009014 02-Sep-20 20 uL 1 pg/g HRMS-7 [(08) 07:33 085MSUSI	0287836F	1									
Target Analytes	TEF (WHO 2005)	Ret. Time	Conc. pg/g	EDL pg/g	Flags	EMPC pg/g	LQL	Mid Poinf pg/f	t TEQ 9					
2,3,7,8-TCDD) 1	NotFnd	<0.035	0.035	U		0.60	0.017	75					
1,2,3,7,8-PeCDD	1	32.20	0.0712	0.037	М,Ј		3.0	0.071	.2					
1,2,3,4,7,8-HxCDD	0.1	34.27	< 0.17	0.15	M,J,R	0.17	3.0	0.017	7					
1,2,3,6,7,8-HXCDD	0.1	34.33	< 0.28	0.14	M,U,	0.28	3.0	0.020	7					
1,2,3,4,6,7,8-HpCDD	0.01	35.93	<7.5	0.44	R	7.5	3.0	0.07	5					
OCDD	0.0003	37.41	55.7	1.1			6.0	0.016	71					
2,3,7,8-TCDF	- 0.1	26.98	<0.19	0.058	J,R	0.19	0.60	0.01'	9					
1,2,3,7,8-PeCDF	. 0.03	31.24	0.104	0.048	М,Ј		3.0	0.003	12					
2,3,4,7,8-PeCDF	0.3	31.98	0.294	0.040	M,J		3.0	0.088	32					
1,2,3,4,7,8-HxCDF	0.1	33.77	0.261	0.062	M,J		3.0	0.026	51 -					
1,2,3,6,7,8-HXCDF 2 3 4 6,7,8-HXCDF	0.1	33.84 34.17	0.180 0.241	0.059	ر M.1		3.U 3.0	0.010	8					
1,2,3,7,8,9-HxCDF	. 0.1	34.62	<0.096	0.096	,- U		3.0	0.004	18					
1,2,3,4,6,7,8-HpCDF	0.01	35.38	2.24	0.085	J		3.0	0.022	24					
1,2,3,4,7,8,9-HpCDF	0.01	36.19	<0.15	0.15	M,U	0.13	3.0	0.0007	75					
OCDF	.00003	37.50	7.36	0.47	М		6.0	0.0022	21					
Extraction Standards	Pg		% Rec	Limits										
13C12-2,3,7,8-TCDD	2000	27.89	90	25-164										
13C12-1,2,3,7,8-PeCDD	2000	32.19	73	25-181										
13C12-1,2,3,4,7,8-HxCDD	2000	34.26	70	32-141										
13C12-1,2,3,4,6,7,8-HpCDD	2000	35.92	51	23-130										
13C12-0CDD	4000	37.40	19	17-157										
13C12-2,3,7,8-TCDF	2000	26.98	84	24-169										
13C12-1,2,3,7,8-PeCDF	2000	31.23	74	24-185										
13C12-2,3,4,7,8-PeCDF	2000	31.97	72	21-178										
13C12-1,2,3,4,7,8-HxCDF 13C12-1 2,3,6,7,8-HxCDF	2000	33.77	79 102	26-152 26-123										
13C12-2,3,4,6,7,8-HxCDF	2000	34.17	87	28-136										
13C12-1,2,3,7,8,9-HxCDF	2000	34.59	78	29-147										
13C12-1,2,3,4,6,7,8-HpCDF	2000	35.37	67 53	28-143 26-138										
13012-1,2,3,4,7,0,5-110001	2000	30.10		20-130										
Cleanup Standard	pg													
37Cl4-2,3,7,8-TCDD (Cleanup)	40	27.92	89	35-197										
			Conc.	EDL										
Homologue Group Totals		# peaks	pg/g	pg/g										
Total-TCDD	j.	6.00	0.691	0.035			0.60							
Total-PeCDD		3.00	0.776	0.037			3.0							
Total-HxCDD	1	1.00	1.08	0.15			3.0							
Total-TCDF	:	10.00	2.55	0.058			0.60							
Total-PeCDF	:	9.00	4.13	0.048			3.0							
Total-HxCDF	:	8.00	3.87	0.096			3.0							
Total-HpCDF	:	1.00	2.24	0.15			3.0							
Toxic Equivalency - (WHC	2005)		pg/g											
Lower Bound PCDD/F TEQ	(WHO 2005)		0.272											
Mid Point PCDD/F TEQ (WI	HO 2005)		0.441					0.44	1					
Upper Bound PCDD/F TEQ	(WHO 2005)		0.471											
EDL		Indicates t	the Estima	ated Dete	ction Lim ⁱ	it, based	on the mea	sured background noi	ise for this	target in this sa	mple.			
TEF	-	Indicates t	.he Toxic	Equivalen	cy Factor			TEQ Indic	ates the To	oxic Equivalency				
M	1	Indicates t	hat a peal that this c	к has bee	n manual	ly integra	sted.	EDI						
	,	indicates t	nat this co	Jinpound	was not t	Jeteeteu	Joove the L	.DE.						
i	J	Indicates t	chat a tarç	jet analyt	e was de!	cected be	low the cali!	prated range.						
R	ł	Indicates t	hat the io	n abunda	nce ratio	for this c	ompound d	id not meet the accep	stance crite	erion.				
101		Lower Our	ntificatio	n Linnit h	and on t	he lowest	colibration	lovel corrected for co	male size	oplite and diluti				
LQL	-	Estimated	Maximum	1 Possible	Seu on th	ration – e	levated det	ection limit due to int	erference c	spins and dilution or positive id crit	erion failure			
Line										,				

ALS Life Sciences													
					Labor	atory	Metho	d BlankAnalysi	s Report				
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Method Blank WG3389586-1 EPA 1613B Blank QC							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 26-Aug-20 17.00 n/a 1	g	Approved: N Ashtari e-signature 03-Sep-2020		
Run Information		Run 1									· ·		
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		7-200901/ 02-Sep-20 20 uL 1 pg/g HRMS-7	404) 04:44 DB5MSUS(0287836F	1								
Target Analytes	TEF (WHO 2005)	Ret. Time	Conc. pg/g	EDL pg/g F	lags	EMPC pg/g	LQL						
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	1 1	NotFnd NotFnd	<0.046 <0.033	0.046 0.033	U U		0.59 2.9						
1,2,3,4,7,8-HxCDD	0.1	34.29	< 0.078	0.078	M,U	0.054	2.9						
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	0.1	NotFnd 34.46	<0.070 <0.071	0.070	U M,U	0.038	2.9						
1,2,3,4,6,7,8-HpCDD OCDD	0.01 0.0003	NotFnd 37.42	<0.086 <0.34	0.086 0.24	U M,J,R	0.34	2.9 5.9						
2,3,7,8-TCDF	0.1	NotFnd	<0.044	0.044	U		0.59						
1,2,3,7,8-PeCDF	0.03	NotFnd	< 0.038	0.038	U		2.9						
1,2,3,4,7,8-HxCDF	0.1	33.80	< 0.031	0.031	и,U	0.025	2.9						
1,2,3,6,7,8-HxCDF	0.1	NotFnd	<0.026	0.026	U		2.9						
2,3,4,6,7,8-HxCDF	0.1	34.19 34.62	< 0.051	0.029	J,R M 11	0.051	2.9						
1,2,3,4,6,7,8-HpCDF	0.01	35.41	<0.10	0.040	M,J,R	0.10	2.9						
1,2,3,4,7,8,9-HpCDF OCDF	0.01 0.0003	36.18 37.56	<0.065 <0.37	0.065 0.22	M,U M,J,R	0.052 0.37	2.9 5.9						
Extraction Standards	Pg		% Rec	Limits									
13C12-2,3,7,8-TCDD	2000	27.90	82	25-164									
13C12-1,2,3,7,8-PeCDD	2000	32.20	74	25-181									
13C12-1,2,3,4,7,8-HxCDD 13C12-1,2,3,6,7,8-HxCDD	2000	34.28 34.33	66 101	32-141 28-130									
13C12-1,2,3,4,6,7,8-HpCDD	2000	35.93	67	23-140									
13C12-0CDD	4000	37.42	39	17-157									
13C12-2,3,7,8-TCDF	2000	26.99 31.24	78 75	24-169 24-185									
13C12-2,3,4,7,8-PeCDF	2000	31.98	73	21-178									
13C12-1,2,3,4,7,8-HxCDF	2000	33.78	69	26-152									
13C12-2,3,4,6,7,8-HxCDF	2000	34.18	83	28-136									
13C12-1,2,3,7,8,9-HxCDF	2000	34.59	71	29-147									
13C12-1,2,3,4,6,7,8-HpCDF 13C12-1,2,3,4,7,8,9-HpCDF	2000	35.38 36.18	75 69	28-143 26-138									
Cleanup Standard	pg												
37Cl4-2,3,7,8-TCDD (Cleanup)	40	27.93	80	35-197									
Homologue Group Tatal-		# nonly	Conc.	EDL									
Homologue Group Totals		# peaks	P9/9	P9/9									
Total-ICDD Total-PeCDD		0.00	<0.046	0.046	U		0.59						
Total-HxCDD		0.00	<0.078	0.078	U		2.9						
Total-HpCDD		0.00	<0.086	0.086	U		2.9						
Total-TCDF Total-PeCDF		0.00	<0.044	0.044	U		0.59						
Total-HxCDF		0.00	< 0.046	0.046	U		2.9						
Total-HpCDF		0.00	<0.065	0.065	U		2.9						
Toxic Equivalency - (WHO	2005)		pg/g										
Lower Bound PCDD/F TEQ	(WHO 2005)		0.00										
Mid Point PCDD/F TEQ (WH Upper Bound PCDD/F TEQ	10 2005) (WHO 2005)		0.0700 0.134										
EDL		Indicates t	the Estimat	ted Detec	tion Limi	t, based o	on the meas	ured background noise fo	r this target in this s	sample.			
I EF M	I	Indicates t	that a peak	k has bee	n manua	lly integra	ated.	ieų indicates	the Toxic Equivalen	cy.			
l	I	Indicates t	that this co	mpound	was not	detected	above the E	DL.					
	I	Indicates	that a targ	et analyte	a wae dot	ected hol	ow the calib	rated range					
F		Indicates t	that the ior	n abunda	nce ratio	for this c	ompound di	d not meet the acceptance	e criterion.				
		1		1.6- 11 - 1				and a much the second					
LQI EMPC	-	Lower Qua Estimated	Maximum	Limit, ba Possible	ised on ti Concentr	ation – el	evated dete	evel corrected for sample ction limit due to interfere	ence or positive id c	riterion failure			

ALS Life Sciences													
				Lab	oratory Cont	rol Sample Analys	is Report						
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	Laboratory C WG3389586-2 EPA 1613B LCS QC	Control Samp	ple			Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 26-Aug-20 1 n/a 1	g	Approved: NAshtari e-signature 03-Sep-2020				
Run Information		Run 1											
Filename		7-200901	A02										
Run Date		02-Sep-20	0 03:19										
Final Volume		20 uL											
Dilution Factor		1											
Analysis Units		%											
Instrument - Column		HRMS-7	DB5MSUS02	37836H									
Townet Anolytes	pg	Ret.	Lii	nits Flame									
larget Analytes		Time	% Rec	Flags									
2,3,7,8-TCDD	200	27.93	89 67	-158									
1,2,3,7,6-PeCDL 1 2 3 4 7 8-HxCDD) 1000	34.22	94 70	-142 -164									
1,2,3,6,7,8-HxCDE	1000	34.33	89 76	-134									
1,2,3,7,8,9-HxCDD	1000	34.46	93 64	-162									
1,2,3,4,6,7,8-HpCDD	1000	35.93	97 70	-140									
OCDE	2000	37.42	91 78	-144	м								
2,3,7,8-TCDF	200	27.01	98 75	-158									
1,2,3,7,8-PeCDF	1000	31.25	111 80	-134									
2,3,4,7,8-PeCDF	1000	31.99	99 68	-160									
1,2,3,4,7,8-HxCDF	1000	33.79	104 72	-134									
1,2,3,6,7,8-HxCDF	1000	33.86	111 84	130									
2,3,4,0,7,8-HXCDF	= 1000 = 1000	34.10	104 70	-130									
1,2,3,4,6,7,8-HpCDF	= 1000	35.39	110 82	-122									
1,2,3,4,7,8,9-HpCDF	1000	36.19	109 78	-138									
OCDF	2000	37.50	124 63	-170									
Extraction Standards	pg		% Rec Lir	nits									
13C12-2.3.7.8-TCDF	2000	27.90	83 20	-175									
13C12-1,2,3,7,8-PeCDD	2000	32.19	74 21	-227									
13C12-1,2,3,4,7,8-HxCDD	2000	34.27	71 21	193									
13C12-1,2,3,6,7,8-HxCDD	2000	34.32	102 25	-163									
13C12-1,2,3,4,6,7,8-HPCDL 13C12-0CDE	2000	35.93	59 ZO 25 13	-100									
13012-0001	4000	57.41	25 15										
13C12-2,3,7,8-TCDF	2000	26.99	81 22	-152 102									
13C12-1,2,3,7,8-PeCDF	2000	31.24	69 13	-328									
13C12-1,2,3,4,7,8-HxCDF	2000	33.78	77 19	-202									
13C12-1,2,3,6,7,8-HxCDF	2000	33.84	103 21	-159									
13C12-2,3,4,6,7,8-HxCDF	2000	34.17	86 22	-176									
13C12-1,2,3,7,8,9-HXCDF 13C12-1 2 3 4 6 7 8-HnCDF	- 2000	34.59	72 17	-205 -158									
13C12-1,2,3,4,7,8,9-HpCDF	2000	36.18	60 20	-186									
Cleanup Standard	pa												
	P9	22.02		101									
37CI4-2,3,7,8-TCDD (Cleanup) 40	27.93	77 31	-191									
ħ.	1	Indicates	that a neak k	las heen m	nually integrated								
Į.		marcates	and a peak i										

Chain of Custody (COC) / Analytical Request Form

COC Number: 17 -Page of 1

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Report To	Contact and company name below will appear on the final report		Report Format	Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)															
Company:	Furofins Ottawa	Select Report Fo	ormat: 🔽 PDF		DD (DIGITAL)	Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply													
Contact:	Scott Clark	Quality Control (QC) Report with R	eport YES) Å	4 day	[P4-20%]		Ху 1	Busi	iness d	ay [E -	100%]				
Phone:	613-727-5692	Compare Results	to Criteria on Report -	provide details belo	ow if box checked	LIORIT Mess D	3 day	[P3-25%]	1 🗆		S AERGE	iame l	Day, W	eekend	l or Sta	itutory	/ holiday	[E2 -200%	6 п
	Company address below will appear on the final report	Select Distribution	on: 🗹 Email	🗋 MAIL 🗌	FAX	ia (Busi	2 day	[P2-50%	J 🗆		۵ (I	Labor	atory o	pening	j fees n	nay ap	ply)]		
Street:	146 Colonnade Rd.	Email 1 or Fax	Ottawa.subcontra	ct@eurofins.con	n	D	ate and	Time Requ	uired for	all E&F	TATs:	j, er			dd-m	imm-yy	/ hh:mm		
City/Province:	Ottawa/ON	Email 2				For test	ts that ca	n not be per	formed a	ccording	to the s	ervice le	vel select	ed, you w	ill be conf	tacted.			
Postal Code:	K2E 7Y1	Email 3																	
Invoice To	Same as Report To		Invoice Distribution (/						e Filtered	d (F), Pr	eserved		(s						
	Copy of Invoice with Report YES NO	Select Invoice D	Select Invoice Distribution: EMAIL MAIL FAX																ţ
Company:	Eurofins Ottawa	Email 1 or Fax	Email 1 or Fax KarenMcGee@eurofins.com															14	Ĩ,
Contact:	Karen McGee	Email 2	Email 2												1				ļ Ē
	Project Information	Oil	Oil and Gas Required Fields (client use)														Ì	Z	ecia
ALS Account	# / Quote #:Q66514 / 25540	AFE/Cost Center:		PO#		ןפֿן	<u> </u>												e Sp
Job #:	1937015	Major/Minor Code:		Routing Code:		Ō	2											l o	(se
PO/AFE:	OTT-2008-10	Requisitioner:				_ <u></u>	ž											μÜ	ARD
LSD:		Location:				1~													ĮŽ
ALS Lab Wo	rk Order # (lab use only): L2491669 CF.	ALS Contact:	Melanie Moshi	Sampler:		IBEI	0X Q											E E	CTED
ALS Sample #	Sample Identification and/or Coordinates (This description will appear on the report)	•	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUN -	ā											SA	SUSPE
	1511717		10-9-20		Spil		$\overline{\mathbf{\Lambda}}$												
19 <u>1</u> 9 1			17 -	-		-	Ĭ.		1							i			
	121 + 5								-				+					1	
	1211718				$+-\psi$			·			+		-+-	+				<u> </u>	
							\vdash									┢──╋		-	
															+	┝──╋			
												$ \rightarrow $		\perp	\downarrow	\vdash			
																			_
	n											_							
	-					-						-			+ +	\square			
															+	 -		+	
												\rightarrow		+		\vdash			
											COND				D (lab				
Drinkin	g Water (DW) Samples ¹ (client use)	Specify Criteria to a	add on report by cli	icking on the dro	p-down list below	Eroze		Π.	JA		SIF O	bserva	ations	Yes		1	Nc		
	ten from a Bequilated DW System?						acks		Cubes	Ē	Custo	dv sea	al intact	Ye	sΓ	ี 1	Nc	, en	
Are samples ta	Ken from a Regulated DW System r	0				Cooli	ing Ini	L	Juber		Quelo	.,							
							INI	ITIAL COO	LER TEN	APERA	TURES •	vic.		ার	FINAL C	POLER	TEMPERA	TURES C	<u>.</u> Salah si si si
Are samples to						24	14				1.48			TO	. 4	1			
	SHIDMENT RELEASE (Might use)		INITIAL SHIPMEN	T RECEPTION	(lab use only)		-++	Taipel ins	<u>transfer</u>	_6	AYAL :	SHIPN	AENT P	ECEP		ab uşe	only)		
Released by:		Received by:	-	Date:	<u> </u>	Time		Receive	d by:	1	11	<u>-</u> [Date:	In	2	Π.	ND	Tile 1	11
	(NV 20/2/70 Nool	1/arth	HARASSUL	ta 8	MW Rs	13	10				A			111	U	ЩЦ	<u> </u>	<u> </u>	$\underline{\mathcal{N}}$
REFER TO BAG	CK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	0	I WI	HITE - LABORATO	RY COPY YE	LLOW -	CLIEN	T COPY	ane of th		- leport	CODY]	•	.,		NK	JV 2018 FRC
Failure to complete	te all portions of this form may delay analysis. Please fill in this form LEGIBLY. By	une use or this form the	e user acknowledges a	ing agrees with the	Contraction Contaillon	a aa ahac		waon pi	or ar	J	/	- 1641		\mathbf{U}					

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.